Zadania maturalne z chemii

Znalezionych zadań - 35

Strony

31

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 57. (1 pkt)

Rozpuszczalność substancji Zamknięte (np. testowe, prawda/fałsz)

Iloczyn rozpuszczalności KSO trudno rozpuszczalnej soli to iloczyn stężeń (podniesionych do odpowiednich potęg) jonów tworzących tę sól w stanie równowagi w nasyconym roztworze tej soli. Dla soli typu AB, której dysocjacja przebiega zgodnie z równaniem:

AB ⇄ A2+ + B2−

iloczyn rozpuszczalności KSO = [A2+] · [B2−]. Jeżeli w roztworze będą obecne jony A2+ oraz B2− i wartość iloczynu ich stężeń będzie mniejsza od wartości iloczynu rozpuszczalności soli AB, to osad tej soli nie wytrąci się. Strącenie osadu nastąpi wtedy, gdy zostanie przekroczona wartość iloczynu rozpuszczalności.

Iloczyn rozpuszczalności KSO siarczanu(VI) baru w temperaturze T wynosi:

KSO = [Ba2+]·[SO2−4] = 1,08 · 10−10

Na podstawie: J. Sawicka i inni, Tablice chemiczne, Gdańsk 2004, s. 221.

Uzupełnij poniższe zdanie. Wybierz i podkreśl jedno określenie spośród podanych w każdym nawiasie tak, aby zdanie było prawdziwe.

W temperaturze T (może/nie może) istnieć roztwór, w którym iloczyn stężeń kationów baru i anionów siarczanowych(VI) jest równy 1,08 · 10–7, ponieważ wartość ta jest (mniejsza/ większa) od wartości iloczynu rozpuszczalności siarczanu(VI) baru w temperaturze T.

32

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 61. (2 pkt)

Stężenia roztworów Rozpuszczalność substancji Oblicz

W czterech zlewkach przygotowano w temperaturze 293 K po 100 g roztworów czterech soli o stężeniu 10% masowych. Następnie do każdej zlewki dosypano po 10 g tych samych soli, utrzymując temperaturę 293 K – zgodnie z poniższym rysunkiem.

Rozpuszczalność tych soli w wodzie w temperaturze 293 K podano w poniższej tabeli.

Substancja BaCl2 KCl Na2SO4 NaNO3
Rozpuszczalność, g w 100 g wody 35,74 34,03 19,23 87,27
Na podstawie: J. Sawicka i inni, Tablice chemiczne, Gdańsk 2008, s. 222.
a)Dla zlewek I, II i III wykonaj obliczenia i podaj numery tych zlewek, w których otrzymano roztwory nienasycone.
b)Oblicz stężenie (wyrażone w procentach masowych) roztworu, który otrzymano w zlewce oznaczonej numerem IV.
33

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 73. (1 pkt)

Rozpuszczalność substancji Oblicz

Fluorek wapnia CaF2 występuje w przyrodzie jako minerał fluoryt. Czysty fluorek wapnia jest substancją trudno rozpuszczalną w wodzie i można go łatwo wytrącić w postaci drobnokrystalicznego osadu. Proces rozpuszczania trudno rozpuszczalnej substancji jonowej możemy przedstawić równaniem:

AxBy (stały) ⇄ xAy+ (roztwór) + yBx– (roztwór)

Stała równowagi opisująca ten proces wyraża się równaniem:

Kc = cxAy+(roztw.) ⋅ cByBx–(roztw.)

jest nazywana iloczynem rozpuszczalności substancji AxBy i oznaczana symbolem KSO(AxBy). Jeżeli w roztworze iloczyn stężeń jonów, na które dysocjuje dana substancja, w potęgach odpowiadających współczynnikom stechiometrycznym z równania dysocjacji jonowej tej substancji przekracza wartość iloczynu rozpuszczalności, to w roztworze takim obserwujemy wytrącanie się osadu trudno rozpuszczalnej soli. Iloczyn rozpuszczalności fluorku wapnia w wodzie wynosi KSO(CaF2) = 3,16 ⋅ 10–11.

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, t. 2, Warszawa 2002, str. 354–355, 560–561.

W zlewce o pojemności 500,00 cm3 zmieszano 130,00 cm3 roztworu chlorku wapnia o stężeniu 0,00500 mol · dm–3 i 70 cm3 roztworu fluorku sodu o stężeniu 0,00400 mol · dm–3. Objętość powstałego roztworu była sumą objętości roztworów wyjściowych.

Wykaż, przeprowadzając odpowiednie obliczenia, że w zlewce, w której zmieszano roztwory obu soli wytrącił się drobnokrystaliczny osad.

34
35

Matura Maj 2014, Poziom rozszerzony (Formuła 2007)Zadanie 21. (1 pkt)

Rozpuszczalność substancji Zamknięte (np. testowe, prawda/fałsz)

Siarczki są solami słabego kwasu siarkowodorowego, dlatego możliwość ich wytrącenia zależy nie tylko od iloczynu rozpuszczalności, lecz także od pH roztworu. W roztworach o niskim pH stężenie jonów siarczkowych jest bardzo małe, więc stężenie jonów metalu musi być odpowiednio duże, aby został przekroczony iloczyn rozpuszczalności. Dla roztworu o znanym pH można obliczyć najmniejsze stężenie molowe kationów danego metalu c, jakie musi istnieć w roztworze o tym pH, aby zaczął się wytrącać osad siarczku tego metalu. Na poniższym wykresie przedstawiono zależność logarytmu z najmniejszego stężenia c kationów Cu2+ i Zn2+ (log c), przy którym następuje strącanie siarczków miedzi(II) i cynku, od pH roztworu.

Na podstawie: J. Minczewski, Z. Marczenko, Chemia analityczna. Podstawy teoretyczne i analiza jakościowa, Warszawa 2001.

Przygotowano dwa roztwory wodne, których pH było równe 1. Roztwór I zawierał jony Zn2+ o stężeniu c równym 10–5 mol · dm–3, a roztwór II zawierał jony Cu2+ o stężeniu c równym 10–5 mol · dm–3.

Czy w roztworze I wytrąci się osad ZnS, a w roztworze II osad CuS? Wpisz TAK albo NIE w odpowiednie rubryki tabeli.

W roztworze I wytrąci się osad ZnS.              
W roztworze II wytrąci się osad CuS.              

Strony