Zadania maturalne z chemii

Znalezionych zadań - 22

Strony

1

Matura Czerwiec 2024, Poziom rozszerzony (Formuła 2023)Zadanie 4. (1 pkt)

Szybkość reakcji Zamknięte (np. testowe, prawda/fałsz)

Reakcja rozkładu tlenku azotu(V) przebiega według równania:

2N2O5 (g) → 4NO2 (g) + O2 (g)

Zależność szybkości tej reakcji od stężenia N2O5 przedstawia równanie kinetyczne:

𝑣 = 𝑘 ∙ cN2O5

W temperaturze 65 °C wartość stałej szybkości reakcji 𝑘 jest równa 5,2 · 10−3 s−1.

Na podstawie: L. Jones, P. Atkins, Chemia ogólna. Cząsteczki, materia, reakcje, Warszawa 2004.

Oceń prawdziwość poniższych zdań. Zaznacz P, jeżeli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

1. Stała szybkości 𝑘 opisanej reakcji prowadzonej w temperaturze T wyższej niż 65 °C będzie miała wartość mniejszą niż 5,2 · 10−3 s−1. P F
2. Początkowa szybkość reakcji rozkładu tlenku azotu(V) w temperaturze 65 °C wzrasta czterokrotnie po czterokrotnym wzroście stężenia N2O5. P F
2

Matura Czerwiec 2024, Poziom rozszerzony (Formuła 2023)Zadanie 5. (4 pkt)

Szybkość reakcji Oblicz

Równanie kinetyczne wyznacza się doświadczalnie. W tym celu dokonuje się wielokrotnego pomiaru szybkości reakcji przy zmianie stężenia tylko jednego z reagentów. Takie postępowanie pozwala określić, jak zmiana stężenia wpływa na wartość szybkości reakcji. Przeprowadzono trzy doświadczenia, w których określono początkową szybkość reakcji przebiegającej w temperaturze T według równania:

S2O2−8 (aq) + 3I (aq) → 2SO2−4 (aq) + I3 (aq)

Równanie kinetyczne przedstawionego procesu ma postać:

𝑣 = 𝑘 ∙ c 𝑚S2O2−8c𝑛I

Wartości stężenia jonów S2O2−8 i I oraz uzyskane wartości początkowej szybkości zaniku jonów S2O2−8 podano w poniższej tabeli. Przedstawione dane pozwoliły określić współczynniki 𝑚 i 𝑛 w równaniu kinetycznym tej reakcji.

Doświadczenie Początkowe stężenie, mol · dm−3 Początkowa szybkość,
mol · dm−3 ∙ s−1
S2O2−8 I
1. 0,15 0,21 1,14
2. 0,22 0,21 1,70
3. 0,22 0,12 0,98
Na podstawie: L. Jones, P. Atkins, Chemia ogólna. Cząsteczki, materia, reakcje, Warszawa 2004.

Oblicz szybkość reakcji (wyrażoną w jednostce: mol · dm−3 · s−1) w doświadczeniu 1. w chwili, gdy w wyniku zachodzącej reakcji stężenie jonów S2O2−8 obniży się do wartości 0,10 mol · dm−3.

3

Matura Maj 2024, Poziom rozszerzony (Formuła 2023)Zadanie 6. (3 pkt)

Szybkość reakcji Stężenia roztworów Uzupełnij/narysuj wykres, schemat lub tabelę Zamknięte (np. testowe, prawda/fałsz)

Nadtlenek wodoru jest to substancja nietrwała, którą należy przechowywać w zimnym i ciemnym miejscu, gdyż w innych warunkach ulega powolnemu rozkładowi. Postęp rozkładu nadtlenku wodoru można badać np. za pomocą techniki miareczkowania.

W termostatowanym naczyniu umieszczono roztwór H2O2 o pewnym stężeniu, który utrzymywano w temperaturze 40 °C. W równych odstępach czasowych z tego roztworu pobierano próbki, które schładzano i miareczkowano za pomocą zakwaszonego roztworu manganianu(VII) potasu o stężeniu 0,0020 mol ∙ dm−3. Podczas miareczkowania zachodziła reakcja opisana równaniem:

2KMnO4 + 5H2O2 + 3H2SO4 → 2MnSO4 + 5O2 + K2SO4 + 8H2O

Wyznaczenie objętości zużytego roztworu KMnO4 pozwoliło obliczyć stężenie molowe H2O2 w próbce.

Objętość każdej pobieranej próbki była równa 2,0 cm3. Uzyskane wyniki przedstawiono w tabeli.

Czas, minuty 0 10 20 30
Objętość KMnO4, cm3 19,1 14,2 9,9 6,2

6.1. (0–2)

Uzupełnij poniższą tabelę, a następnie narysuj wykres przedstawiający zależność stężenia nadtlenku wodoru od czasu. Wartość stężenia zapisz w zaokrągleniu do trzeciego miejsca po przecinku.

Czas, minuty 0 10 20 30
Stężenie molowe H2O2, mol ∙ dm−3 0,048 0,036

Obliczenia pomocnicze:

6.2. (0–1)

Uzupełnij zdania. Wybierz i zaznacz jedną odpowiedź spośród podanych w każdym nawiasie.

Szybkość reakcji rozkładu nadtlenku wodoru wraz z upływem czasu (rośnie / maleje / nie ulega zmianie).
Szybkość reakcji rozkładu nadtlenku wodoru w temperaturze 40 °C jest (większa niż / mniejsza niż / taka sama jak) w temperaturze 20 °C.

4

Zbiór zadań problemowych CKE, Poziom rozszerzony (Formuła 2023)Zadanie 4. (4 pkt)

Szybkość reakcji Oblicz

Wpływ temperatury na szybkość reakcji tłumaczy się wykładniczym wzrostem wartości stałej szybkości reakcji 𝑘. Tę zależność opisuje równanie Arrheniusa:

𝑘 = 𝐴 ∙ e–𝐸a𝑅∙𝑇

gdzie 𝐸a oznacza energię aktywacji, 𝑅 – uniwersalną stałą gazową, a 𝑇 – temperaturę bezwzględną wyrażoną w kelwinach. Czynnik e–𝐸a𝑅∙𝑇 informuje o tym, jaka część zderzających się molekuł ma energię większą lub równą energii aktywacji, natomiast czynnik 𝐴, nazywany czynnikiem przedwykładniczym, określa częstotliwości zderzeń efektywnych. Wartość czynnika 𝐴 jest w praktyce niezależna od temperatury. Równanie Arrheniusa może być przekształcone do postaci logarytmicznej:

ln(𝑘) = – 𝐸a𝑅1𝑇 + ln𝐴

będącej równaniem liniowym (𝑦=𝑎𝑥+𝑏), opisującym zależność logarytmu naturalnego1 ze stałej szybkości reakcji ln(𝑘) od odwrotności temperatury 1𝑇. Wartość (– 𝐸a𝑅) jest współczynnikiem kierunkowym tej prostej.

Badano przebieg reakcji chemicznej, zachodzącej między wodorem i chlorkiem bromu, przebiegającej według następującego równania reakcji:

H2 (g) + 2BrCl (g) → Br2 (g) + 2HCl (g)

Po ustaleniu mechanizmu opisanej reakcji określono jej równanie kinetyczne jako:

𝑣 = 𝑘 ∙ 𝑐H2 ∙ 𝑐BrCl

Tę reakcję przeprowadzano w różnych temperaturach należących do przedziału od 310 K do 380 K i za każdym razem wyznaczono wartość jej stałej szybkości. Otrzymane dane zestawiono w tabeli.

Nr pomiaru Temperatura 𝑇, K Stała szybkości reakcji 𝑘, dm3 ∙ mol−1 ∙ s−1
1 310 5,33∙10–3
2 320 6,90∙10–3
3 330 8,78∙10–3
4 340 11,02∙10–3
5 350 13,66∙10–3
6 360 16,73∙10–3
7 370 20,26∙10–3
8 380 24,29∙10–3

1 logarytm o podstawie równej liczbie Eulera, wynoszącej e ≈ 2,7183, podlega takim samym regułom działań jak pozostałe logarytmy o innych podstawach należących do zbioru liczb rzeczywistych.

Uzupełnij tabelę brakującymi wartościami ln(𝒌) (z dokładnością do dwóch miejsc po przecinku) oraz narysuj wykres zależności logarytmu naturalnego ze stałej szybkości reakcji pomiędzy wodorem a chlorkiem bromu ln(𝒌) od odwrotności temperatury 1𝑇. Następnie oblicz wartość energii aktywacji tej reakcji.

Obliczenia pomocnicze do narysowania wykresu:

1𝑇 ∙ 105, K–1 323 313
ln(𝑘) –5,23 –4,98

Wykres:

Obliczenia:

5

Matura Maj 2023, Poziom rozszerzony (Formuła 2023)Zadanie 6. (2 pkt)

Szybkość reakcji Oblicz

Pewna reakcja chemiczna:

2A (g) + B (g) ⇄ 2C (g)

przebiega w temperaturze 298 K według równania kinetycznego: 𝑣 = 𝑘 ∙ c2A ∙ cB.
Stała szybkości 𝑘 opisanej przemiany w temperaturze 298 K jest równa
6,7 ∙ 103 dm6 ∙ mol–2 ∙ s–1. Początkowe stężenie substancji A wynosiło 4 mol ∙ dm−3, a początkowe stężenie substancji B było równe 3 mol ∙ dm−3.

Oblicz szybkość opisanej reakcji w momencie, w którym przereagowało 𝟓𝟎 % początkowej ilości substancji B.

6

Matura Czerwiec 2023, Poziom rozszerzony (Formuła 2023)Zadanie 6. (2 pkt)

Szybkość reakcji Oblicz

W roztworze alkoholowo-wodnym zawierającym bromometan oraz wodorotlenek sodu przebiega reakcja opisana równaniem:

CH3Br + OH → CH3OH + Br

Zależność szybkości tej reakcji od stężeń reagentów przedstawia równanie kinetyczne:

v = k ∙ cCH3Br ∙ cOH

W temperaturze 55 °C wartość k jest równa 2,14 · 10−2 dm3 · mol−1 · s−1.

Na podstawie: R.T. Morrison, R.N. Boyd, Chemia organiczna, Warszawa 1996.

Reakcję CH3Br z NaOH prowadzono w temperaturze 55 °C. Po pewnym czasie stężenie jonów OH – wskutek przebiegu reakcji chemicznej – zmalało z 0,060 mol ∙ dm−3 do wartości 0,050 mol ∙ dm−3, a szybkość reakcji wynosiła 1,07 · 10−5 mol ∙ dm−3 ∙ s−1.

Oblicz początkowe stężenie molowe bromometanu.

7

Informator CKE matury dwujęzycznej (tłumaczenie BiologHelp), Poziom rozszerzony (Formuła 2023)Zadanie 9. (2 pkt)

Sole Szybkość reakcji Zamknięte (np. testowe, prawda/fałsz)

Wodne roztwory manganianu(VII) potasu nie są zbyt stabilne, ze względu na reakcję rozkładu tej substancji z wodą, jak na poniższym schemacie:

MnO4 + H2O → MnO2 (s) + O2 (g) + OH

Reakcję rozkładu KMnO4 przyspieszają takie czynniki jak światło, podwyższona temperatura, kwasy, tlenek manganu(IV).

9.1. (0–1)

Przyspieszenie reakcji chemicznej przez jeden z produktów reakcji nazywamy autokatalizą, a produkt pełniący rolę katalizatora − autokatalizatorem.

Poniżej przedstawiono typowy wykres obrazujący zmianę szybkości reakcji autokatalitycznej względem czasu reakcji.

Uzupełnij poniższe zdania tak, aby zawierały informacje prawdziwe. W każdym nawiasie podkreśl właściwe określenie.

Reakcja autokatalityczna zachodzi przy (stałym / zmiennym) stężeniu katalizatora. Szybkość takiej reakcji początkowo wzrasta w miarę jej postępu i związanego z tym (wzrostu / spadku) stężenia produktu, który jest jej katalizatorem. Następnie szybkość autokatalitycznej reakcji maleje z powodu (wzrostu / spadku) stężenia substratów.

9.2. (0–1)

Probówkę zawierającą wodny roztwór KMnO4 umieszczono w łaźni wodnej i ogrzewano przez pewien czas.

Oceń poniższe fotografie (A−D) i wskaż te, które przedstawiają zawartość probówki z roztworem przed i po ogrzaniu. Wpisz do tabeli odpowiednie oznaczenia literowe fotografii probówek.

Oznaczenie literowe fotografii:
przed ogrzewaniem
po ogrzewaniu
8

Arkusz pokazowy CKE Marzec 2022, Poziom rozszerzony (Formuła 2023)Zadanie 15. (3 pkt)

Szybkość reakcji Podaj/wymień Oblicz

Równanie kinetyczne reakcji opisanej równaniem:

2NO (g) + O2 (g) → 2NO2 (g)

ma postać:

v = 𝑘 ∙ c2NO ∙ cO2

Na podstawie: J. Sawicka i inni, Tablice chemiczne, Gdańsk 2004.

Szybkość reakcji chemicznej v, wyrażona w jednostce: mol ∙ dm−3 ∙ s−1, zależy od stężeń molowych substratów reakcji oraz od stałej szybkości reakcji 𝑘 – współczynnika charakterystycznego dla danej reakcji. Stała szybkości reakcji zależy od temperatury, a nie zależy od stężenia substratów.

15.1. (0–1)

Napisz jednostkę stałej szybkości reakcji 𝒌 w równaniu kinetycznym opisanej reakcji.

15.2. (0–2)

W zamkniętym reaktorze o pojemności 2 dm3 zmieszano 6 moli tlenku azotu(II) i 4 mole tlenu. Podczas reakcji utrzymywano stałą temperaturę T.

Oblicz, ile razy zmaleje szybkość opisanej reakcji w stosunku do szybkości początkowej, w momencie, w którym stężenie tlenu zmniejszy się o 1 mol ∙ dm−3.

9

Test diagnostyczny CKE Grudzień 2022, Poziom rozszerzony (Formuła 2023)Zadanie 16. (2 pkt)

Szybkość reakcji Zamknięte (np. testowe, prawda/fałsz) Oblicz

Badano kinetykę reakcji utleniania jonów bromkowych jonami bromianowymi(V) w środowisku kwasowym, która przebiega zgodnie z równaniem:

5Br + BrO3 + 6H+ → 3Br2 + 3H2O

Na podstawie pomiarów kinetycznych ustalono następującą zależność między szybkością tej reakcji a stężeniami reagentów:

𝑣 = 𝑘 ⸱ [Br] ⸱ [BrO3] ⸱ [H+]2

16.1. (0–1)

Stała szybkości reakcji w zależności od postaci równania kinetycznego może mieć różny wymiar. Niżej przedstawiono przykładowe wyrażenia oznaczone literami A–D.

  1. dm6mol2∙s
  2. dm9mol3∙s
  3. dm3∙smol
  4. 1s

Uzupełnij poniższe zdania. Wybierz i zaznacz jedną odpowiedź spośród podanych w każdym nawiasie.

Stała szybkości reakcji utleniania jonów bromkowych jonami bromianowymi(V) ma jednostkę oznaczoną literą (A / B / C / D). Jedno z podanych wyrażeń nie może być jednostką stałej szybkości reakcji. To wyrażenie oznaczono literą (A / B / C / D).

16.2. (0–1)

Oblicz, jak zmieni się szybkość opisanej reakcji, jeżeli początkowe pH roztworu będzie wyższe o 𝟎,𝟑.

Szybkość reakcji

10

Biomedica 2022, Poziom rozszerzony (Formuła 2015)Zadanie 8. (2 pkt)

Szybkość reakcji Bilans elektronowy Napisz równanie reakcji Oblicz

W wyniku reakcji kwasu bromowodorowego z kwasem bromowym(V) powstaje brom i woda. Równanie kinetyczne tej reakcji ma postać:

v = k[Br][BrO3][H+]2

8.1. (0-1)

Napisz równanie tej reakcji w formie jonowej skróconej. Uzupełnij współczynniki reakcji za pomocą bilansu jonowo-elektronowego z uwzględnieniem oddanych i przyjętych elektronów.

8.2. (0-1)

Jak zmieni się szybkość tej reakcji, jeśli stężenie każdego z substratów zmaleje dwukrotnie?

Odpowiedź:

To zadanie pochodzi ze zbioru matura 2022 wydawnictwa Biomedica
Kup pełny zbiór zadań

Strony