Układ okresowy pierwiastków

Oto lista zadań maturalnych z danego działu chemii. Aby skorzystać z dodatkowych opcji lub wybrać zadania z pozostałych działów kliknij poniżej.

Przejdź do wyszukiwarki zadań

 

Matura Maj 2020, Poziom rozszerzony (Formuła 2015)Zadanie 1. (4 pkt)

Elektrony w atomach, orbitale Układ okresowy pierwiastków Reakcje utleniania i redukcji - ogólne Narysuj/zapisz wzór Uzupełnij/narysuj wykres, schemat lub tabelę

O dwóch pierwiastkach umownie oznaczonych literami X i Z wiadomo, że:

  • oba przyjmują w związkach chemicznych taki sam maksymalny stopień utlenienia
  • konfiguracja elektronowa atomu pierwiastka X w stanie wzbudzonym, który powstał w wyniku przeniesienia jednego z elektronów sparowanych na podpowłokę wyższą energetycznie i nieobsadzoną, może zostać przedstawiona w postaci zapisu:
konfiguracja elektronowa atomu pierwiastka X
  • w stanie podstawowym atom pierwiastka Z ma łącznie na ostatniej powłoce i na podpowłoce 3d pięć elektronów.

1.1. (0–2)

Wpisz do tabeli symbol pierwiastka X i symbol pierwiastka Z, numer grupy oraz symbol bloku konfiguracyjnego, do których należy każdy z pierwiastków.

Symbol pierwiastka Numer grupy Symbol bloku konfiguracyjnego
pierwiastek X
pierwiastek Z

1.2. (0–1)

Napisz wzór sumaryczny wodorku pierwiastka X oraz maksymalny stopień utlenienia, jaki przyjmują pierwiastki X i Z w związkach chemicznych.

Wzór sumaryczny wodorku pierwiastka X:

Maksymalny stopień utlenienia, jaki przyjmują pierwiastki X i Z w związkach chemicznych:

1.3. (0–1)

Przedstaw pełną konfigurację elektronową jonu Z2+ w stanie podstawowym. Zastosuj zapis z uwzględnieniem podpowłok.

Matura Czerwiec 2019, Poziom rozszerzony (Formuła 2015)Zadanie 1. (3 pkt)

Elektrony w atomach, orbitale Układ okresowy pierwiastków Izotopy i promieniotwórczość Uzupełnij/narysuj wykres, schemat lub tabelę Oblicz

Wśród sztucznych przemian jądrowych można wyróżnić reakcje, które są następstwem bombardowania stabilnych jąder nukleonami. Poniżej przedstawiono równanie takiej reakcji (przemiana I), a drugą – opisano schematem (przemiana II).

przemiana I 63Li + 11p → 32He + 42He
przemiana II 3517Cl + 10n → 35ZX + 11p , gdzie Z oznacza liczbę atomową pierwiastka X.

Na podstawie: J. Sawicka, A. Janich-Kilian, W. Cejner-Mania, G. Urbańczyk, Tablice chemiczne, Gdańsk 2015.

W równaniach tych przemian bilansuje się oddzielnie liczby atomowe i oddzielnie liczby masowe. Ich sumy po obu stronach równania muszą być sobie równe.

1.1. (0–1)

Uzupełnij poniższą tabelę – wpisz symbol chemiczny pierwiastka X, symbol bloku konfiguracyjnego, do którego należy pierwiastek X, liczbę elektronów walencyjnych w atomie pierwiastka X oraz najniższy stopień utlenienia, który przyjmuje ten pierwiastek w związkach chemicznych.

Symbol pierwiastka Symbol bloku Liczba elektronów walencyjnych Najniższy stopień utlenienia
       

1.2. (0–1)

Elektrony w atomie mogą absorbować energię i zajmować wyższe poziomy energetyczne. Atom może znaleźć się wtedy w takim stanie wzbudzonym, w którym wszystkie elektrony podpowłok walencyjnych będą niesparowane.

Uzupełnij poniższe schematy, tak aby przedstawiały zapis konfiguracji elektronowej atomu pierwiastka X w stanie podstawowym oraz w stanie wzbudzonym, w którym wszystkie elektrony walencyjne są niesparowane i należą do powłoki trzeciej.

Konfiguracja elektronowa w stanie podstawowym

Konfiguracja elektronowa w stanie wzbudzonym

1.3. (0–1)

Oblicz, ile miligramów obu izotopów helu powstałoby łącznie ze 100 miligramów izotopu litu 63Li w wyniku przemiany I, gdyby proces przebiegał z wydajnością równą 100%. Przyjmij, że wartości masy atomowej poszczególnych izotopów są równe ich liczbom masowym.

Matura Maj 2014, Poziom podstawowy (Formuła 2007)Zadanie 2. (1 pkt)

Układ okresowy pierwiastków Zamknięte (np. testowe, prawda/fałsz)

Na poniższym schemacie układu okresowego pierwiastków (bez lantanowców i aktynowców) zaznaczono położenie trzech pierwiastków oznaczonych numerami I, II oraz III.

Wypełnij tabelę, wpisując literę P, jeżeli informacja jest prawdziwa, lub literę F, jeżeli jest fałszywa.

1. Pierwiastek I jest aktywnym metalem. Reaguje z wodą, w wyniku czego tworzy się wodorotlenek o wzorze ogólnym MeOH, który jest mocną zasadą. P F
2. Pierwiastki II i III są niemetalami. Pierwiastek III jest aktywniejszy od pierwiastka II. P F
3. Wodorki pierwiastków II i III mają wzór ogólny HX. Są rozpuszczalne w wodzie, w której ulegają dysocjacji jonowej, w wyniku czego tworzą się roztwory o odczynie kwasowym. P F

Matura Maj 2014, Poziom podstawowy (Formuła 2007)Zadanie 1. (2 pkt)

Układ okresowy pierwiastków Zamknięte (np. testowe, prawda/fałsz)

Na rysunku przedstawiono schemat układu okresowego pierwiastków (bez lantanowców i aktynowców), na którym umieszczono strzałki A i B odpowiadające kierunkom zmian wybranych wielkości charakteryzujących pierwiastki chemiczne.

Podkreśl wszystkie wymienione poniżej wielkości, których wzrost wskazują strzałki oznaczone literami A i B.

1. Dla pierwiastków 1. grupy strzałka A wskazuje kierunek wzrostu

elektroujemności     masy atomowej     ładunku jądra atomowego

2. Dla pierwiastków grup 1.–2. i 13.–17. okresu III strzałka B wskazuje kierunek wzrostu

elektroujemności     masy atomowej     ładunku jądra atomowego

Matura Maj 2019, Poziom podstawowy (Formuła 2007)Zadanie 1. (1 pkt)

Elektrony w atomach, orbitale Układ okresowy pierwiastków Uzupełnij/narysuj wykres, schemat lub tabelę

Pierwiastek E położony jest w 16. grupie układu okresowego pierwiastków. Liczba elektronów niewalencyjnych atomu pierwiastka E jest równa 10.

Uzupełnij tabelę. Podaj symbol pierwiastka E, konfigurację elektronową jego atomu w stanie podstawowym oraz wzór prostego anionu pierwiastka E.

Symbol pierwiastka E Konfiguracja elektronowa Wzór prostego anionu pierwiastka E
                                         
 
                                         
 
                                         
 

Matura Maj 2019, Poziom rozszerzony (Formuła 2007)Zadanie 7. (1 pkt)

Układ okresowy pierwiastków Elektrony w atomach, orbitale Reakcje utleniania i redukcji - ogólne Podaj/wymień

Pierwiastek A tworzy aniony złożone o wzorze AO4 , w których występuje na swoim najwyższym stopniu utlenienia. Pierwiastek A jest metalem.
Pierwiastek D tworzy aniony złożone o wzorze DO3, w których występuje na swoim najwyższym stopniu utlenienia. Pierwiastek D może przyjmować w związkach ujemne stopnie utlenienia.

Uzupełnij poniższe zdania. Wybierz i zaznacz jedno określenie spośród podanych w każdym nawiasie, a w wyznaczone miejsca wpisz numer grupy oraz stopień utlenienia.

Pierwiastek A w jonie AO4 może w reakcji redoks pełnić funkcję (wyłącznie reduktora / reduktora lub utleniacza / wyłącznie utleniacza). Pierwiastek D w jonie DO3 może (wyłącznie oddać elektrony / wyłącznie przyjąć elektrony / oddać lub przyjąć elektrony).
Pierwiastek A należy do grupy układu okresowego pierwiastków.
Pierwiastek D należy do grupy układu okresowego pierwiastków,
a jego najniższy stopień utlenienia w związkach jest równy .

Matura Maj 2019, Poziom rozszerzony (Formuła 2007)Zadanie 5. (1 pkt)

Układ okresowy pierwiastków Zamknięte (np. testowe, prawda/fałsz)

Anion tlenkowy O2– jest zasadą Brønsteda mocniejszą niż jon wodorotlenkowy OH. Jon tlenkowy nie występuje w wodnych roztworach, ponieważ jako bardzo mocna zasada reaguje z cząsteczką wody.

Uzupełnij poniższe zdania. Wybierz i zaznacz jedno określenie spośród podanych w każdym nawiasie.

Aniony tlenkowe występują w sieci krystalicznej jonowych tlenków pierwiastków mających (małą / dużą) elektroujemność i należących do grup układu okresowego o numerach: (1 i 2 / 14 i 15 / 16 i 17). Ulegające reakcji z wodą tlenki tych pierwiastków tworzą roztwory o silnie (kwasowym / zasadowym) odczynie, a więc o (niskim / wysokim) pH.

Matura Maj 2019, Poziom rozszerzony (Formuła 2015)Zadanie 5. (1 pkt)

Układ okresowy pierwiastków Zamknięte (np. testowe, prawda/fałsz)

Anion tlenkowy O2– jest zasadą Brønsteda mocniejszą niż jon wodorotlenkowy OH. Jon tlenkowy nie występuje w wodnych roztworach, ponieważ jako bardzo mocna zasada reaguje z cząsteczką wody.

Uzupełnij poniższe zdania. Wybierz i zaznacz jedno określenie spośród podanych w każdym nawiasie.

Aniony tlenkowe występują w sieci krystalicznej jonowych tlenków pierwiastków mających (małą / dużą) elektroujemność i należących do grup układu okresowego o numerach: (1 i 2 / 14 i 15 / 16 i 17). Ulegające reakcji z wodą tlenki tych pierwiastków tworzą roztwory o silnie (kwasowym / zasadowym) odczynie, a więc o (niskim / wysokim) pH.

Matura Maj 2014, Poziom rozszerzony (Formuła 2007)Zadanie 3. (2 pkt)

Układ okresowy pierwiastków Masa atomowa, cząsteczkowa i molowa Podaj/wymień

Na poniższym wykresie przedstawiono zależność pewnej makroskopowej wielkości charakteryzującej pierwiastki chemiczne w funkcji ich liczby atomowej Z.

a)Opisz oś pionową wykresu, podając nazwę tej wielkości oraz jednostkę, w jakiej jest ona wyrażana.

Opis osi pionowej:

Pierwsza energia jonizacji E1 to najmniejsza energia potrzebna do oddzielenia pierwszego (o najwyższej energii) elektronu od atomu. Poniższy wykres przedstawia zależność pierwszej energii jonizacji atomów pierwiastków z czterech pierwszych okresów układu okresowego od liczby atomowej Z tych pierwiastków.

Na podstawie: W. Mizerski, Tablice chemiczne, Warszawa 1997
b)Uzupełnij zdanie. Wybierz i podkreśl numer grupy pierwiastków spośród podanych w nawiasie.

W danym okresie układu okresowego największą wartość pierwszej energii jonizacji E1 mają pierwiastki (pierwszej / trzeciej / siedemnastej / osiemnastej) grupy.

Matura Maj 2014, Poziom rozszerzony (Formuła 2007)Zadanie 2. (1 pkt)

Układ okresowy pierwiastków Zamknięte (np. testowe, prawda/fałsz)

Na poniższym schemacie układu okresowego pierwiastków (bez lantanowców i aktynowców) zaznaczono położenie trzech pierwiastków oznaczonych numerami I, II oraz III.

Wypełnij tabelę, wpisując literę P, jeżeli informacja jest prawdziwa, lub literę F, jeżeli jest fałszywa.

Informacja P/F
1. Pierwiastek I jest aktywnym metalem. Tworzy wodorek, w którym wodór przyjmuje stopień utlenienia równy – I.
2. Atomy pierwiastka II mają silniejszą tendencję do przyłączania elektronu niż atomy pierwiastka III. W konsekwencji pierwiastek II jest silniejszym utleniaczem niż pierwiastek III.
3. Wodorki pierwiastków II oraz III, rozpuszczając się w wodzie, ulegają dysocjacji jonowej. Stala dysocjacji wodorku pierwiastka II jest większa od stałej dysocjacji wodorku pierwiastka III.

Matura Maj 2014, Poziom rozszerzony (Formuła 2007)Zadanie 1. (2 pkt)

Układ okresowy pierwiastków Zamknięte (np. testowe, prawda/fałsz)

Na rysunku przedstawiono schemat układu okresowego pierwiastków (bez lantanowców i aktynowców), na którym umieszczono strzałki A i B odpowiadające kierunkom zmian wybranych wielkości charakteryzujących pierwiastki chemiczne.

Podkreśl wszystkie wymienione poniżej wielkości, których wzrost wskazują strzałki oznaczone literami A i B.

  1. Dla pierwiastków 1. grupy strzałka A wskazuje kierunek wzrostu
    najwyższego stopnia utlenienia    promienia atomowego    promienia jonowego
  2. Dla pierwiastków grup 1.–2. i 13.–17. okresu III strzałka B wskazuje kierunek wzrostu
    najwyższego stopnia utlenienia    promienia atomowego    charakteru metalicznego

Matura Maj 2015, Poziom podstawowy (Formuła 2007)Zadanie 2. (1 pkt)

Układ okresowy pierwiastków Elektrony w atomach, orbitale Uzupełnij/narysuj wykres, schemat lub tabelę

W układzie okresowym pierwiastków wyróżnia się 4 bloki konfiguracyjne:

  1. blok s, który stanowią pierwiastki 1. i 2. grupy oraz hel – elektrony walencyjne atomów tych pierwiastków (w stanie podstawowym) zajmują w powłoce walencyjnej o numerze n podpowłokę ns
  2. blok p, do którego należą pierwiastki z grup od 13. do 18. z wyjątkiem helu – w powłoce walencyjnej o numerze n atomów tych pierwiastków (w stanie podstawowym) można wyróżnić podpowłokę ns, która jest całkowicie obsadzona elektronami, oraz podpowłokę np, którą zajmują pozostałe elektrony walencyjne
  3. blok d, do którego należą pierwiastki z grup od 3. do 12.
  4. blok f, który stanowią lantanowce i aktynowce.

Zaznacz znakiem x na poniższym schemacie fragmentu układu okresowego wszystkie pierwiastki, które należą do bloku p, a ich atomy w powłoce walencyjnej (w stanie podstawowym) mają dokładnie trzy elektrony.

Matura Maj 2015, Poziom podstawowy (Formuła 2007)Zadanie 1. (1 pkt)

Układ okresowy pierwiastków Zamknięte (np. testowe, prawda/fałsz)

W układzie okresowym pierwiastków wyróżnia się 4 bloki konfiguracyjne:

  1. blok s, który stanowią pierwiastki 1. i 2. grupy oraz hel – elektrony walencyjne atomów tych pierwiastków (w stanie podstawowym) zajmują w powłoce walencyjnej o numerze n podpowłokę ns
  2. blok p, do którego należą pierwiastki z grup od 13. do 18. z wyjątkiem helu – w powłoce walencyjnej o numerze n atomów tych pierwiastków (w stanie podstawowym) można wyróżnić podpowłokę ns, która jest całkowicie obsadzona elektronami, oraz podpowłokę np, którą zajmują pozostałe elektrony walencyjne
  3. blok d, do którego należą pierwiastki z grup od 3. do 12.
  4. blok f, który stanowią lantanowce i aktynowce.

Poniżej wymieniono symbole sześciu pierwiastków.

B     C     N     O     F     Ne

Wybierz i podkreśl w każdym nawiasie poprawne uzupełnienie poniższych zdań.

Pierwiastki, których symbole wymieniono powyżej, stanowią w układzie okresowym fragment (II okresu / III okresu / 2. grupy / 3. grupy) i należą do bloku konfiguracyjnego (s / p). Atomy tych pierwiastków mają w stanie podstawowym jednakowe rozmieszczenie elektronów walencyjnych w podpowłoce (2s / 2p), a różnią się rozmieszczeniem elektronów walencyjnych w podpowłoce (2s / 2p). Największą liczbę elektronów walencyjnych ma atom (fluoru / neonu).

Matura Czerwiec 2015, Poziom rozszerzony (Formuła 2007)Zadanie 4. (1 pkt)

Układ okresowy pierwiastków Zamknięte (np. testowe, prawda/fałsz)

W tabeli opisane są wybrane nuklidy oznaczone numerami I–X. Dla każdego z nich podano liczbę atomową, liczbę masową, masę atomową oraz procentową zawartość w naturalnym pierwiastku (w % liczby atomów).

I II III IV V VI VII VIII IX X
2412E 2512E 2612E 2814E 2914E 3014E 20482E 20682E 20782E 20882E
23,99 u 24,99 u 25,98 u 27,98 u 28,98 u 29,97 u 203,97 u 205,97 u 206,98 u 207,98 u
78,99% 10,00% 11,01% 92,22% 4,69% 3,09% 1,41% 24,11% 22,11% 52,41%

Na podstawie: J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002.

Na podstawie danych z tabeli i układu okresowego pierwiastków oceń, czy poniższe informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, lub F – jeśli jest fałszywa.

1. Nuklidy oznaczone numerami I–III mają takie same właściwości chemiczne. P F
2. W jądrach nuklidów oznaczonych numerami IV–VI liczba protonów jest równa liczbie neutronów. P F
3. W przypadku nuklidów oznaczonych numerami VII–X ten jest najbardziej rozpowszechniony w przyrodzie, którego masa atomowa jest najbardziej zbliżonado średniej masy atomowej pierwiastka. P F

Matura Czerwiec 2015, Poziom rozszerzony (Formuła 2007)Zadanie 3. (2 pkt)

Układ okresowy pierwiastków Zamknięte (np. testowe, prawda/fałsz)

Miarą tendencji atomów do oddawania elektronów i przechodzenia w dodatnio naładowane jony jest energia jonizacji. Pierwsza energia jonizacji to minimalna energia potrzebna do oderwania jednego elektronu od atomu. Na poniższym wykresie przedstawiono zmiany pierwszej energii jonizacji pierwiastków uszeregowanych według rosnącej liczby atomowej.

Na podstawie: J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002.

Korzystając z informacji, uzupełnij poniższe zdania – wybierz i podkreśl jedno określenie spośród podanych w każdym nawiasie.

  1. Spośród pierwiastków danego okresu litowce mają (najniższe / najwyższe), a helowce – (najniższe / najwyższe) wartości pierwszej energii jonizacji. Litowce są bardzo dobrymi (reduktorami / utleniaczami). Potas ma (niższą / wyższą) wartość pierwszej energii jonizacji niż sód, ponieważ w jego atomie elektron walencyjny znajduje się (bliżej jądra / dalej od jądra) niż elektron walencyjny w atomie sodu. Oznacza to, że (łatwiej / trudniej) oderwać elektron walencyjny atomu potasu niż elektron walencyjny atomu sodu.
  2. Wartość pierwszej energii jonizacji atomu magnezu jest (niższa / wyższa) niż wartość pierwszej energii jonizacji atomu glinu, gdyż łatwiej oderwać pojedynczy elektron z niecałkowicie obsadzonej podpowłoki (s / p / d) niż elektron z całkowicie obsadzonej podpowłoki (s / p / d).

Matura Czerwiec 2015, Poziom rozszerzony (Formuła 2007)Zadanie 1. (3 pkt)

Elektrony w atomach, orbitale Układ okresowy pierwiastków Stopnie utlenienia Uzupełnij/narysuj wykres, schemat lub tabelę Narysuj/zapisz wzór Podaj/wymień

W powłoce walencyjnej atomów (w stanie podstawowym) dwóch pierwiastków, oznaczonych umownie literami X i Z, tylko jeden elektron jest niesparowany. W obu atomach stan kwantowo-mechaniczny niesparowanego elektronu opisany jest główną liczbą kwantową n = 3 i poboczną liczbą kwantową l = 1. Liczba atomowa pierwiastka X jest mniejsza od liczby atomowej pierwiastka Z.

1.1. (0-1)

Uzupełnij poniższą tabelę – wpisz symbole pierwiastków X i Z, dane dotyczące ich położenia w układzie okresowym oraz symbol bloku konfiguracyjnego (energetycznego), do którego należy każdy z pierwiastków.

Pierwiastek Symbol pierwiastka Numer okresu Numer grupy Symbol bloku
X
Z

1.2. (0-1)

Napisz wzory jonów tworzących tlenek pierwiastka X.

Wzory jonów tworzących tlenek:

1.3. (0-1)

Podaj maksymalny i minimalny stopień utlenienia, jaki może przyjmować pierwiastek Z w związkach chemicznych, oraz określ charakter chemiczny tlenku, w którym pierwiastek Z występuje na najwyższym stopniu utlenienia.

Maksymalny stopień utlenienia:
Minimalny stopień utlenienia:
Charakter chemiczny tlenku pierwiastka Z:

Matura Maj 2015, Poziom rozszerzony (Formuła 2007)Zadanie 1. (1 pkt)

Elektrony w atomach, orbitale Układ okresowy pierwiastków Zamknięte (np. testowe, prawda/fałsz)

Poniżej wymieniono symbole sześciu pierwiastków.

In     Sn     Sb     Te     I     Xe

Wybierz i podkreśl w każdym nawiasie poprawne uzupełnienie poniższego tekstu.

Pierwiastki, których symbole wymieniono powyżej, stanowią w układzie okresowym pierwiastków fragment (III okresu / V okresu / 3. grupy / 5. grupy) i należą do bloku konfiguracyjnego (s / p / d). Atomy tych pierwiastków mają w stanie podstawowym jednakowe rozmieszczenie elektronów walencyjnych w podpowłoce (4d / 5s / 5p), a różnią się rozmieszczeniem elektronów walencyjnych w podpowłoce (4d / 5s / 5p). Największą liczbę elektronów walencyjnych ma atom (indu / antymonu / jodu / ksenonu).

Strony