Zadania maturalne z chemii

Znalezionych zadań - 1558

Strony

1401

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 94. (3 pkt)

Sole Napisz równanie reakcji Podaj i uzasadnij/wyjaśnij

Żółty roztwór chromianu(VI) potasu po zakwaszeniu zmienia barwę na pomarańczową wskutek tworzenia się jonów dichromianowych(VI) Cr2O2−7. Po wprowadzeniu jonów H3O+ powstają w pierwszej chwili jony HCrO4, ulegające następnie kondensacji z utworzeniem jonów dichromianowych(VI).

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004, s. 893.

Przeprowadzono dwa doświadczenia.

Doświadczenie 1.
Do probówki z wodnym roztworem chromianu(VI) potasu dodawano wodny roztwór kwasu siarkowego(VI) aż do zmiany zabarwienia roztworu na pomarańczową (etap I, w wyniku którego otrzymano substancję X). Następnie do tej samej probówki dodawano wodny roztwór wodorotlenku potasu, aż do uzyskania pierwotnej barwy roztworu (etap II).

Doświadczenie 2.
Do probówki z wodnym roztworem dichromianu(VI) potasu dodawano wodny roztwór wodorotlenku potasu aż do zmiany zabarwienia roztworu na żółtą (etap I, w wyniku którego otrzymano substancję Z). Następnie do tej samej probówki dodawano wodny roztwór kwasu siarkowego(VI), aż do uzyskania pierwotnej barwy roztworu (etap II). Doświadczenia zilustrowano schematami.

a)Napisz, w odpowiedniej kolejności, w formie jonowej skróconej równania dwóch reakcji zachodzących podczas I etapu doświadczenia 1., w których wyniku powstał roztwór substancji X.
b)Napisz w formie jonowej skróconej równania reakcji zachodzących podczas I i II etapu doświadczenia 2.
c)Sformułuj wniosek dotyczący trwałości chromianów(VI) i dichromianów(VI) w zależności od środowiska reakcji.
1402

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 95. (2 pkt)

Elektrony w atomach, orbitale Układ okresowy pierwiastków Podaj/wymień

W tabeli zestawiono właściwości fizyczne borowców.

Nazwa pierwiastka Ogólna konfiguracja elektronów walencyjnych w stanie podstawowym Rozpowszechnienie w skorupie ziemskiej,
%
Gęstość,
g · cm–3
Temperatura topnienia,
K
bor ns2np1 1,0 ⋅ 10−4 2,34 2570,00
glin 8,23 2,70 933,47
gal 1,9 ⋅ 10−4 5,91 302,91
ind 4,5 ⋅ 10−5 7,31 429,75
tal 8,5 ⋅ 10−5 11,85 577,00

Większość pierwiastków 13. grupy układu okresowego stanowi mieszaninę 2 trwałych izotopów, np. tal występuje w przyrodzie w postaci 2 izotopów o masach równych 202,97 u i 204,97 u. Bor jest pierwiastkiem niemetalicznym, podczas gdy pozostałe pierwiastki tej grupy są metalami. Glin i tal mają typowe sieci metaliczne o najgęstszym ułożeniu atomów, gal i ind tworzą sieci rzadko spotykane u metali. Te różnice w strukturze powodują różnice w twardości i temperaturach topnienia. Glin jest kowalny i ciągliwy; gal jest twardy i kruchy, natomiast ind należy do najbardziej miękkich pierwiastków – daje się kroić nożem, podobnie jak tal. Elementarny bor wykazuje bardzo wysoką temperaturę topnienia, co jest spowodowane występowaniem w jego sieci przestrzennej silnych wiązań kowalencyjnych. Bor można otrzymać w reakcji redukcji tlenku boru metalicznym magnezem użytym w nadmiarze. Otrzymany tą metodą preparat zawiera 98% boru, natomiast 2% stanowią zanieczyszczenia takie, jak tlenek magnezu i nadmiar użytego do reakcji magnezu. Czysty krystaliczny bor można otrzymać między innymi przez rozkład termiczny jodku boru. Krystaliczny bor ma barwę czarnoszarą, wykazuje dużą twardość i jest złym przewodnikiem elektryczności; charakteryzuje się małą aktywnością chemiczną – nie działa na niego wrzący kwas solny ani kwas fluorowodorowy.

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004, s. 760–793;
J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002, s. 202.

Napisz, stosując zapis pełny (uwzględniający rozmieszczenie elektronów na podpowłokach), konfigurację elektronową atomu galu w stanie podstawowym oraz określ przynależność tego pierwiastka do bloku energetycznego (konfiguracyjnego).

1403

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 96. (1 pkt)

Elektrony w atomach, orbitale Zamknięte (np. testowe, prawda/fałsz)

W tabeli zestawiono właściwości fizyczne borowców.

Nazwa pierwiastka Ogólna konfiguracja elektronów walencyjnych w stanie podstawowym Rozpowszechnienie w skorupie ziemskiej,
%
Gęstość,
g · cm–3
Temperatura topnienia,
K
bor ns2np1 1,0 ⋅ 10−4 2,34 2570,00
glin 8,23 2,70 933,47
gal 1,9 ⋅ 10−4 5,91 302,91
ind 4,5 ⋅ 10−5 7,31 429,75
tal 8,5 ⋅ 10−5 11,85 577,00

Większość pierwiastków 13. grupy układu okresowego stanowi mieszaninę 2 trwałych izotopów, np. tal występuje w przyrodzie w postaci 2 izotopów o masach równych 202,97 u i 204,97 u. Bor jest pierwiastkiem niemetalicznym, podczas gdy pozostałe pierwiastki tej grupy są metalami. Glin i tal mają typowe sieci metaliczne o najgęstszym ułożeniu atomów, gal i ind tworzą sieci rzadko spotykane u metali. Te różnice w strukturze powodują różnice w twardości i temperaturach topnienia. Glin jest kowalny i ciągliwy; gal jest twardy i kruchy, natomiast ind należy do najbardziej miękkich pierwiastków – daje się kroić nożem, podobnie jak tal. Elementarny bor wykazuje bardzo wysoką temperaturę topnienia, co jest spowodowane występowaniem w jego sieci przestrzennej silnych wiązań kowalencyjnych. Bor można otrzymać w reakcji redukcji tlenku boru metalicznym magnezem użytym w nadmiarze. Otrzymany tą metodą preparat zawiera 98% boru, natomiast 2% stanowią zanieczyszczenia takie, jak tlenek magnezu i nadmiar użytego do reakcji magnezu. Czysty krystaliczny bor można otrzymać między innymi przez rozkład termiczny jodku boru. Krystaliczny bor ma barwę czarnoszarą, wykazuje dużą twardość i jest złym przewodnikiem elektryczności; charakteryzuje się małą aktywnością chemiczną – nie działa na niego wrzący kwas solny ani kwas fluorowodorowy.

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004, s. 760–793;
J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002, s. 202.

Uzupełnij poniższe zdania. Wpisz fragment konfiguracji elektronowej atomu talu w stanie podstawowym, który odnosi się do elektronów walencyjnych, a także wybierz i podkreśl symbol typu podpowłoki oraz wartość głównej i pobocznej liczby kwantowej spośród podanych w nawiasach.

Fragment konfiguracji elektronowej atomu talu w stanie podstawowym, który odnosi się do elektronów walencyjnych można zapisać w postaci .
Jedyny niesparowany elektron atomu talu w stanie podstawowym należy do podpowłoki typu (s/p/d). Główna liczba kwantowa n opisująca stan tego elektronu wynosi (4/5/6), a poboczna liczba kwantowa l jest równa (0/1/2/3).

1404

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 97. (1 pkt)

Masa atomowa, cząsteczkowa i molowa Oblicz

W tabeli zestawiono właściwości fizyczne borowców.

Nazwa pierwiastka Ogólna konfiguracja elektronów walencyjnych w stanie podstawowym Rozpowszechnienie w skorupie ziemskiej,
%
Gęstość,
g · cm–3
Temperatura topnienia,
K
bor ns2np1 1,0 ⋅ 10−4 2,34 2570,00
glin 8,23 2,70 933,47
gal 1,9 ⋅ 10−4 5,91 302,91
ind 4,5 ⋅ 10−5 7,31 429,75
tal 8,5 ⋅ 10−5 11,85 577,00

Większość pierwiastków 13. grupy układu okresowego stanowi mieszaninę 2 trwałych izotopów, np. tal występuje w przyrodzie w postaci 2 izotopów o masach równych 202,97 u i 204,97 u. Bor jest pierwiastkiem niemetalicznym, podczas gdy pozostałe pierwiastki tej grupy są metalami. Glin i tal mają typowe sieci metaliczne o najgęstszym ułożeniu atomów, gal i ind tworzą sieci rzadko spotykane u metali. Te różnice w strukturze powodują różnice w twardości i temperaturach topnienia. Glin jest kowalny i ciągliwy; gal jest twardy i kruchy, natomiast ind należy do najbardziej miękkich pierwiastków – daje się kroić nożem, podobnie jak tal. Elementarny bor wykazuje bardzo wysoką temperaturę topnienia, co jest spowodowane występowaniem w jego sieci przestrzennej silnych wiązań kowalencyjnych. Bor można otrzymać w reakcji redukcji tlenku boru metalicznym magnezem użytym w nadmiarze. Otrzymany tą metodą preparat zawiera 98% boru, natomiast 2% stanowią zanieczyszczenia takie, jak tlenek magnezu i nadmiar użytego do reakcji magnezu. Czysty krystaliczny bor można otrzymać między innymi przez rozkład termiczny jodku boru. Krystaliczny bor ma barwę czarnoszarą, wykazuje dużą twardość i jest złym przewodnikiem elektryczności; charakteryzuje się małą aktywnością chemiczną – nie działa na niego wrzący kwas solny ani kwas fluorowodorowy.

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004, s. 760–793;
J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002, s. 202.

Z układu okresowego pierwiastków odczytaj z dokładnością do drugiego miejsca po przecinku średnią masę atomową talu i oblicz, jaki procent atomów talu występujących w przyrodzie stanowią atomy o masach atomowych podanych w informacji.

1405

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 98. (1 pkt)

Metale Napisz równanie reakcji

W tabeli zestawiono właściwości fizyczne borowców.

Nazwa pierwiastka Ogólna konfiguracja elektronów walencyjnych w stanie podstawowym Rozpowszechnienie w skorupie ziemskiej,
%
Gęstość,
g · cm–3
Temperatura topnienia,
K
bor ns2np1 1,0 ⋅ 10−4 2,34 2570,00
glin 8,23 2,70 933,47
gal 1,9 ⋅ 10−4 5,91 302,91
ind 4,5 ⋅ 10−5 7,31 429,75
tal 8,5 ⋅ 10−5 11,85 577,00

Większość pierwiastków 13. grupy układu okresowego stanowi mieszaninę 2 trwałych izotopów, np. tal występuje w przyrodzie w postaci 2 izotopów o masach równych 202,97 u i 204,97 u. Bor jest pierwiastkiem niemetalicznym, podczas gdy pozostałe pierwiastki tej grupy są metalami. Glin i tal mają typowe sieci metaliczne o najgęstszym ułożeniu atomów, gal i ind tworzą sieci rzadko spotykane u metali. Te różnice w strukturze powodują różnice w twardości i temperaturach topnienia. Glin jest kowalny i ciągliwy; gal jest twardy i kruchy, natomiast ind należy do najbardziej miękkich pierwiastków – daje się kroić nożem, podobnie jak tal. Elementarny bor wykazuje bardzo wysoką temperaturę topnienia, co jest spowodowane występowaniem w jego sieci przestrzennej silnych wiązań kowalencyjnych. Bor można otrzymać w reakcji redukcji tlenku boru metalicznym magnezem użytym w nadmiarze. Otrzymany tą metodą preparat zawiera 98% boru, natomiast 2% stanowią zanieczyszczenia takie, jak tlenek magnezu i nadmiar użytego do reakcji magnezu. Czysty krystaliczny bor można otrzymać między innymi przez rozkład termiczny jodku boru. Krystaliczny bor ma barwę czarnoszarą, wykazuje dużą twardość i jest złym przewodnikiem elektryczności; charakteryzuje się małą aktywnością chemiczną – nie działa na niego wrzący kwas solny ani kwas fluorowodorowy.

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004, s. 760–793;
J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002, s. 202.

Korzystając z informacji, napisz w formie cząsteczkowej dwa równania reakcji, w wyniku których można otrzymać bor.

1406

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 99. (2 pkt)

Metale Napisz równanie reakcji Zaprojektuj doświadczenie

W tabeli zestawiono właściwości fizyczne borowców.

Nazwa pierwiastka Ogólna konfiguracja elektronów walencyjnych w stanie podstawowym Rozpowszechnienie w skorupie ziemskiej,
%
Gęstość,
g · cm–3
Temperatura topnienia,
K
bor ns2np1 1,0 ⋅ 10−4 2,34 2570,00
glin 8,23 2,70 933,47
gal 1,9 ⋅ 10−4 5,91 302,91
ind 4,5 ⋅ 10−5 7,31 429,75
tal 8,5 ⋅ 10−5 11,85 577,00

Większość pierwiastków 13. grupy układu okresowego stanowi mieszaninę 2 trwałych izotopów, np. tal występuje w przyrodzie w postaci 2 izotopów o masach równych 202,97 u i 204,97 u. Bor jest pierwiastkiem niemetalicznym, podczas gdy pozostałe pierwiastki tej grupy są metalami. Glin i tal mają typowe sieci metaliczne o najgęstszym ułożeniu atomów, gal i ind tworzą sieci rzadko spotykane u metali. Te różnice w strukturze powodują różnice w twardości i temperaturach topnienia. Glin jest kowalny i ciągliwy; gal jest twardy i kruchy, natomiast ind należy do najbardziej miękkich pierwiastków – daje się kroić nożem, podobnie jak tal. Elementarny bor wykazuje bardzo wysoką temperaturę topnienia, co jest spowodowane występowaniem w jego sieci przestrzennej silnych wiązań kowalencyjnych. Bor można otrzymać w reakcji redukcji tlenku boru metalicznym magnezem użytym w nadmiarze. Otrzymany tą metodą preparat zawiera 98% boru, natomiast 2% stanowią zanieczyszczenia takie, jak tlenek magnezu i nadmiar użytego do reakcji magnezu. Czysty krystaliczny bor można otrzymać między innymi przez rozkład termiczny jodku boru. Krystaliczny bor ma barwę czarnoszarą, wykazuje dużą twardość i jest złym przewodnikiem elektryczności; charakteryzuje się małą aktywnością chemiczną – nie działa na niego wrzący kwas solny ani kwas fluorowodorowy.

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004, s. 760–793;
J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002, s. 202.

Otrzymana w reakcji tlenku boru z magnezem mieszanina zawiera bor wraz z zanieczyszczeniami.

Zaprojektuj doświadczenie, którego przebieg pozwoli na usunięcie zanieczyszczeń z otrzymanej mieszaniny.
W tym celu:

a)podkreśl nazwę odczynnika, który dodany do rozdrobnionej mieszaniny przereaguje z zanieczyszczeniami, umożliwiając ich usunięcie. Odczynnik wybierz spośród podanych poniżej.

Odczynniki: wodny roztwór wodorotlenku sodu, kwas solny, wodny roztwór chlorku sodu.

b)zapisz w formie cząsteczkowej równania reakcji, jakie przebiegną podczas tego doświadczenia.
1407

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 100. (1 pkt)

Metale Zamknięte (np. testowe, prawda/fałsz)

W tabeli zestawiono właściwości fizyczne borowców.

Nazwa pierwiastka Ogólna konfiguracja elektronów walencyjnych w stanie podstawowym Rozpowszechnienie w skorupie ziemskiej,
%
Gęstość,
g · cm–3
Temperatura topnienia,
K
bor ns2np1 1,0 ⋅ 10−4 2,34 2570,00
glin 8,23 2,70 933,47
gal 1,9 ⋅ 10−4 5,91 302,91
ind 4,5 ⋅ 10−5 7,31 429,75
tal 8,5 ⋅ 10−5 11,85 577,00

Większość pierwiastków 13. grupy układu okresowego stanowi mieszaninę 2 trwałych izotopów, np. tal występuje w przyrodzie w postaci 2 izotopów o masach równych 202,97 u i 204,97 u. Bor jest pierwiastkiem niemetalicznym, podczas gdy pozostałe pierwiastki tej grupy są metalami. Glin i tal mają typowe sieci metaliczne o najgęstszym ułożeniu atomów, gal i ind tworzą sieci rzadko spotykane u metali. Te różnice w strukturze powodują różnice w twardości i temperaturach topnienia. Glin jest kowalny i ciągliwy; gal jest twardy i kruchy, natomiast ind należy do najbardziej miękkich pierwiastków – daje się kroić nożem, podobnie jak tal. Elementarny bor wykazuje bardzo wysoką temperaturę topnienia, co jest spowodowane występowaniem w jego sieci przestrzennej silnych wiązań kowalencyjnych. Bor można otrzymać w reakcji redukcji tlenku boru metalicznym magnezem użytym w nadmiarze. Otrzymany tą metodą preparat zawiera 98% boru, natomiast 2% stanowią zanieczyszczenia takie, jak tlenek magnezu i nadmiar użytego do reakcji magnezu. Czysty krystaliczny bor można otrzymać między innymi przez rozkład termiczny jodku boru. Krystaliczny bor ma barwę czarnoszarą, wykazuje dużą twardość i jest złym przewodnikiem elektryczności; charakteryzuje się małą aktywnością chemiczną – nie działa na niego wrzący kwas solny ani kwas fluorowodorowy.

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004, s. 760–793;
J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002, s. 202.

Wpisz do tabeli literę P, jeżeli zdanie jest prawdziwe, lub literę F – jeśli jest fałszywe.

Zadanie P/F
1. Spośród pierwiastków 13. grupy układu okresowego, które opisano w informacji wprowadzającej, najbardziej rozpowszechnionym w skorupie ziemskiej jest glin, a najmniej rozpowszechnionym ind.
2. Wraz ze wzrostem liczby atomowej borowców, opisanych w informacji wprowadzającej, wzrasta ich gęstość i maleje temperatura topnienia.
3. Wszystkie, opisane w informacji wprowadzającej, pierwiastki 13. grupy układu okresowego to typowe metale, kowalne i ciągliwe.
1408

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 101. (1 pkt)

Struktura atomu - ogólne Metale Podaj/wymień

Żelazo jest pierwiastkiem chemicznym, którego atomy występują w przyrodzie w postaci 4 trwałych odmian izotopowych. Najbardziej rozpowszechnioną odmianę stanowią nuklidy o liczbie masowej 56.

Silnie rozdrobnione żelazo zapala się samorzutnie w powietrzu. Produktem utleniania żelaza w wysokich temperaturach jest magnetyt, Fe3O4. Powstaje on także w czasie spalania żelaza w czystym tlenie (reakcja 1.). Oprócz tlenku Fe3O4 żelazo tworzy jeszcze 2 inne tlenki: FeO i Fe2O3. W podwyższonych temperaturach żelazo reaguje również z parą wodną według równania:

3Fe + 4H2O → Fe3O4 + 4H2

Roztwarzając czyste żelazo w kwasie solnym, uzyskuje się wodny roztwór chlorku żelaza(II) (reakcja 2.), natomiast działając gazowym chlorem na żelazo w podwyższonej temperaturze, uzyskuje się chlorek żelaza(III) (reakcja 3.). Pary chlorku żelaza(III) kondensują, tworząc ciemnobrunatne kryształy dobrze rozpuszczalne w wodzie.

Żelazo ma zdolność zastępowania mniej aktywnych metali w ich roztworach. Przebiega wtedy reakcja opisana schematem:

MeI + Me2+II → Me2+I + MeII

Powyższa przemiana zachodzi także podczas doświadczenia zilustrowanego rysunkiem:

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004, s. 917–934; M. Sienko, R. Plane, Chemia, podstawy i zastosowania, Warszawa 1996, s. 542–550; J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002, s. 202.

Dla atomów nuklidu żelaza, opisanego w informacji wprowadzającej określ ładunek jądra, liczbę protonów, liczbę elektronów i liczbę neutronów.

1409

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 102. (1 pkt)

Metale Oblicz

Żelazo jest pierwiastkiem chemicznym, którego atomy występują w przyrodzie w postaci 4 trwałych odmian izotopowych. Najbardziej rozpowszechnioną odmianę stanowią nuklidy o liczbie masowej 56.

Silnie rozdrobnione żelazo zapala się samorzutnie w powietrzu. Produktem utleniania żelaza w wysokich temperaturach jest magnetyt, Fe3O4. Powstaje on także w czasie spalania żelaza w czystym tlenie (reakcja 1.). Oprócz tlenku Fe3O4 żelazo tworzy jeszcze 2 inne tlenki: FeO i Fe2O3. W podwyższonych temperaturach żelazo reaguje również z parą wodną według równania:

3Fe + 4H2O → Fe3O4 + 4H2

Roztwarzając czyste żelazo w kwasie solnym, uzyskuje się wodny roztwór chlorku żelaza(II) (reakcja 2.), natomiast działając gazowym chlorem na żelazo w podwyższonej temperaturze, uzyskuje się chlorek żelaza(III) (reakcja 3.). Pary chlorku żelaza(III) kondensują, tworząc ciemnobrunatne kryształy dobrze rozpuszczalne w wodzie.

Żelazo ma zdolność zastępowania mniej aktywnych metali w ich roztworach. Przebiega wtedy reakcja opisana schematem:

MeI + Me2+II → Me2+I + MeII

Powyższa przemiana zachodzi także podczas doświadczenia zilustrowanego rysunkiem:

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004, s. 917–934; M. Sienko, R. Plane, Chemia, podstawy i zastosowania, Warszawa 1996, s. 542–550; J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002, s. 202.

W wyniku całkowitej redukcji wodorem 58 g pewnego tlenku żelaza otrzymano żelazo i 18 g wody.

Wykonując odpowiednie obliczenia, ustal, czy redukowanym tlenkiem mógł być magnetyt.

1410

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 103. (2 pkt)

Stechiometryczny stosunek reagentów Właściwości fizyczne cieczy i gazów Oblicz

Żelazo jest pierwiastkiem chemicznym, którego atomy występują w przyrodzie w postaci 4 trwałych odmian izotopowych. Najbardziej rozpowszechnioną odmianę stanowią nuklidy o liczbie masowej 56.

Silnie rozdrobnione żelazo zapala się samorzutnie w powietrzu. Produktem utleniania żelaza w wysokich temperaturach jest magnetyt, Fe3O4. Powstaje on także w czasie spalania żelaza w czystym tlenie (reakcja 1.). Oprócz tlenku Fe3O4 żelazo tworzy jeszcze 2 inne tlenki: FeO i Fe2O3. W podwyższonych temperaturach żelazo reaguje również z parą wodną według równania:

3Fe + 4H2O → Fe3O4 + 4H2

Roztwarzając czyste żelazo w kwasie solnym, uzyskuje się wodny roztwór chlorku żelaza(II) (reakcja 2.), natomiast działając gazowym chlorem na żelazo w podwyższonej temperaturze, uzyskuje się chlorek żelaza(III) (reakcja 3.). Pary chlorku żelaza(III) kondensują, tworząc ciemnobrunatne kryształy dobrze rozpuszczalne w wodzie.

Żelazo ma zdolność zastępowania mniej aktywnych metali w ich roztworach. Przebiega wtedy reakcja opisana schematem:

MeI + Me2+II → Me2+I + MeII

Powyższa przemiana zachodzi także podczas doświadczenia zilustrowanego rysunkiem:

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004, s. 917–934; M. Sienko, R. Plane, Chemia, podstawy i zastosowania, Warszawa 1996, s. 542–550; J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002, s. 202.

Na 4,2 g żelaza podziałano nadmiarem pary wodnej i zainicjowano reakcję, która przebiegła z wydajnością równą 85%.

Oblicz, jaką objętość w warunkach normalnych zajmie wodór, który wydzielił się podczas opisanej przemiany.

Strony