Genetyka

Oto lista zadań maturalnych z danego działu biologii. Aby skorzystać z dodatkowych opcji, uniknąć duplikatów zadań lub wybrać zadania z pozostałych działów kliknij poniżej.

Przejdź do wyszukiwarki zadań

 

Test diagnostyczny (matura próbna) Grudzień 2024, Poziom rozszerzony (Formuła 2023)Zadanie 17. (6 pkt)

Mutacje Dziedziczenie Zamknięte (np. testowe, prawda/fałsz) Podaj/wymień Pozostałe

Agammaglobulinemia Brutona (XLA) charakteryzuje się śladową obecnością we krwi dojrzałych limfocytów B i – w konsekwencji – całkowitym brakiem przeciwciał. Przyczyną choroby są mutacje genu BTK, znajdującego się na chromosomie X.

Poniżej przedstawiono dziedziczenie tej choroby w pewnej rodzinie. Rodzice (II.4 i II.5) zgłosili się do lekarza z powodu objawów XLA – nawracających zapaleń zatok i uszu – u jednego z ich synów. Chory chłopiec (III.4) miał zdrowego brata (III.3) oraz zdrowych rodziców, ale u dwóch braci matki chorego chłopca zdiagnozowano wcześniej XLA. Poniżej rodowodu przedstawiono wynik sekwencjonowania nici kodującej DNA tej części genu BTK, w której zidentyfikowano mutację będącą przyczyną choroby w tej rodzinie. Strzałką wskazano nukleotyd, który uległ mutacji, a pod sekwencjami nukleotydów zapisano kodowaną sekwencję aminokwasową.

Na podstawie: J. Lee i in., A novel BTK gene mutation, c.82delC (p.Arg28Alafs*5), in a Korean family with X-linked agammaglobulinemia, „Korean Journal of Pediatrics” 59(Suppl 1), 2016.

17.1. (0–1)

Uzupełnij poniższe zdania tak, aby w poprawny sposób opisywały zidentyfikowaną u chorego chłopca (III.4) mutację w genie BTK oraz jej konsekwencje dla sekwencji aminokwasowej białka kodowanego przez ten gen. W każdym nawiasie podkreśl właściwe określenie.

Mutacja zidentyfikowana w genie BTK u chorego chłopca polega na (delecji / substytucji) jednego nukleotydu w sekwencji kodującej. Zmieniona sekwencja aminokwasów w łańcuchu polipeptydowym wytwarzanym w komórkach chorego chłopca wynika (z przesunięcia ramki odczytu / ze zmiany kodu genetycznego).

17.2. (0–1)

Określ, czy XLA jest warunkowana mutacją recesywną, czy – dominującą. Odpowiedź uzasadnij, odnosząc się do osób przedstawionych w rodowodzie.

17.3. (0–1)

Podaj genotyp osoby oznaczonej jako III.2. Zastosuj następujące oznaczenia alleli: B – allel dominujący oraz b – allel recesywny.

17.4. (0–3)

Określ, jakie jest prawdopodobieństwo, że kolejne dziecko ze związku osób II.4 i II.5 będzie chore. Zapisz genotypy tych osób oraz odpowiednią krzyżówkę genetyczną. Zastosuj następujące oznaczenia alleli: B – allel dominujący oraz b – allel recesywny.

Genotyp kobiety II.4
Genotyp mężczyzny II.5

Krzyżówka genetyczna:

Prawdopodobieństwo, że kolejne dziecko będzie chore: %.

Test diagnostyczny (matura próbna) Grudzień 2024, Poziom rozszerzony (Formuła 2023)Zadanie 16. (3 pkt)

Dziedziczenie Podaj/wymień Pozostałe

Na poniższej fotografii przedstawiono węża zbożowego (Pantherophis guttatus), mającego charakterystyczne ubarwienie ochronne w postaci pomarańczowych plam otoczonych szeroką czarną obwódką.

Za takie ubarwienie odpowiadają dwa autosomalne geny zlokalizowane na różnych chromosomach:

  • gen A – determinuje wystąpienie pomarańczowego barwnika
  • gen B – odpowiada za wytworzenie czarnego barwnika.

Recesywne allele tych genów w układzie homozygotycznym uniemożliwiają syntezę barwników (allel a – brak pomarańczowych plam, allel b – brak czarnej obwódki).

Węże mogą mieć ubarwienie:

  • z pomarańczowymi plamami z czarnymi obwódkami – typ dziki
  • z pomarańczowymi plamami bez czarnych obwódek
  • z samymi czarnymi obwódkami bez pomarańczowego wypełnienia
  • albinotyczne.
Na podstawie: M. Maćkowiak i A. Michalak (red.), Biologia. Jedność i różnorodność, Warszawa 2008.
Fotografia: J.D. Wilson, herpsofnc.org

16.1. (0–1)

Zapisz wszystkie możliwe genotypy węży o ubarwieniu typu dzikiego.

16.2. (0–2)

Zapisz krzyżówkę genetyczną i na jej podstawie podaj oczekiwany stosunek fenotypowy potomstwa podwójnie heterozygotycznej samicy o ubarwieniu dzikim i albinotycznego samca. Zastosuj oznaczenia alleli podane w tekście.

Krzyżówka genetyczna:

Stosunek fenotypowy:

Test diagnostyczny (matura próbna) Grudzień 2024, Poziom rozszerzony (Formuła 2023)Zadanie 15. (4 pkt)

Metody badawcze i doświadczenia Mutacje Podaj i uzasadnij/wyjaśnij Podaj/wymień

PCR to procedura, która służy do powielenia materiału genetycznego. Do probówki dodaje się następujące odczynniki: materiał genetyczny, który ma podlegać powieleniu (matrycę), nukleotydy, polimerazę DNA oraz startery – oligonukleotydy DNA wyznaczające początek i koniec powielanego fragmentu. Reakcja przebiega w powtarzających się cyklach. Każdy cykl zaczyna się od podniesienia temperatury do ok. 95 °C, aby nici DNA się rozdzieliły, następnie obniża się temperaturę, aby startery przyłączyły się do odpowiednich miejsc w matrycy. W kolejnym etapie dochodzi do syntezy komplementarnej nici. Na tym etapie w wyniku błędów polimerazy mogą zostać wprowadzone mutacje.

Za pomocą PCR powielono ludzki gen MECP2 kodujący białko MECP2A, konieczne do prawidłowego funkcjonowania mózgu. Poniżej przedstawiono początek sekwencji nici kodującej genu MECP2 oraz początek sekwencji aminokwasowej białka MECP2A.

Podczas PCR doszło w trzeciej pozycji czwartego kodonu do dwóch niezależnych mutacji: do substytucji G → A oraz do delecji jednego nukleotydu (G), w wyniku czego w mieszaninie poreakcyjnej oprócz wiernej kopii genu MECP2 znalazły się również dwa wadliwe warianty.

Na podstawie: GenBank sekwencja nr NM_004992.4

15.1. (0–1)

Wyjaśnij, dlaczego do przeprowadzenia PCR wykorzystuje się enzym – polimerazę DNA – pochodzący z organizmu termofilnego.

15.2. (0–1)

Określ, ile razy zwiększa się liczba cząsteczek DNA w trakcie każdego cyklu PCR, jeśli wydajność reakcji jest równa 100%.

15.3. (0–2)

Podaj sekwencje aminokwasowe kodowane przez przedstawiony fragment nici kodującej po zajściu opisanych mutacji. Sekwencje zapisz od końca aminowego do końca karboksylowego, posługując się trójliterowymi oznaczeniami aminokwasów.

  1. substytucja G → A :
  2. delecja G :

Test diagnostyczny (matura próbna) Grudzień 2024, Poziom rozszerzony (Formuła 2023)Zadanie 14. (4 pkt)

Prokarionty Ekspresja informacji genetycznej Genetyka - pozostałe Zamknięte (np. testowe, prawda/fałsz) Uzupełnij/narysuj wykres, schemat lub tabelę Podaj i uzasadnij/wyjaśnij

Wśród bakterii zachodzi intensywny międzykomórkowy przepływ informacji genetycznej, który odbywa się na drodze transformacji, transdukcji lub koniugacji.

Człowiek wykorzystuje naturalnie zachodzące zjawiska do otrzymywania organizmów modyfikowanych genetycznie, np. bakterii wytwarzających ludzkie białko – insulinę. Jednak aby doszło do produkcji insuliny w komórkach bakterii, ludzki gen insuliny musi zostać pozbawiony dwóch intronów, rozdzielających trzy eksony.

Ludzki gen ulega replikacji razem z plazmidem bakteryjnym i dzięki temu występuje w komórce bakteryjnej w dużej liczbie kopii, umożliwiającej syntezę białka na wysokim poziomie.

Na podstawie: U. Kasprzykowska i B.M. Sobieszczańska, Plastyczność bakteryjnych genomów – międzykomórkowy transfer informacji genetycznej, „Postępy Mikrobiologii” 53(2), 2014.

14.1. (0–1)

Do każdego z rodzajów przepływu informacji genetycznej przyporządkuj jeden właściwy opis spośród podanych poniżej (1.–4.).

  1. Zachodzi z udziałem wirusów, które stają się wektorami przenoszącymi DNA z jednej bakterii do drugiej.
  2. Polega na pobieraniu przez komórki bakteryjne materiału genetycznego ze środowiska.
  3. Jest to proces płciowy polegający na przekazaniu materiału genetycznego z komórki dawcy do komórki biorcy. Może zachodzić pomiędzy różnymi gatunkami bakterii.
  4. Polega na przepisaniu informacji genetycznej z RNA na DNA, dzięki czemu dochodzi do integracji takiego materiału genetycznego z genomem bakterii.

transformacja –
transdukcja –
koniugacja –

14.2. (0–1)

Wyjaśnij, dlaczego przed wprowadzeniem ludzkiego genu kodującego insulinę do genomu bakterii usuwa się z tego genu sekwencje intronów. W odpowiedzi uwzględnij znaczenie wycinania intronów u człowieka oraz przebieg ekspresji informacji genetycznej u bakterii.

14.3. (0–2)

Uzupełnij tabelę – dla każdego z enzymów określ jego funkcję w procesie replikacji plazmidowego DNA.

Enzym Funkcja w procesie replikacji plazmidowego DNA
helikaza
prymaza

Test diagnostyczny (matura próbna) Grudzień 2024, Poziom rozszerzony (Formuła 2023)Zadanie 2. (3 pkt)

Choroby człowieka Genetyka - pozostałe Podaj i uzasadnij/wyjaśnij Zamknięte (np. testowe, prawda/fałsz)

W prawidłowo funkcjonujących komórkach zwierząt białko p53, które jest kodowane przez gen TP53, zatrzymuje komórkę z uszkodzonym DNA w tzw. punkcie kontrolnym G1/S, czyli na granicy faz G1/S cyklu komórkowego. Uszkodzenie DNA jest albo naprawiane i komórka przechodzi z opóźnieniem z fazy G1 do fazy S, albo – gdy uszkodzenie jest zbyt poważne i naprawa jest niemożliwa – komórka zostaje skierowana na drogę apoptozy.

Retrogen to dodatkowa kopia genu powstająca na skutek odwrotnej transkrypcji mRNA danego genu. Genom słoni zawiera jeden gen TP53 i aż 19 retrogenów TP53, z których kilka podlega transkrypcji i translacji. W linii ewolucyjnej rzędu trąbowców (Proboscidea), do których należą słonie, stopniowo zwiększała się liczba retrogenów TP53. Dzięki ekspresji retrogenów TP53 białko p53 jest aktywne nawet przy niskim natężeniu czynników mutagennych.

U słoni występuje także gen LIF6, którego transkrypcja jest pobudzana przez białko p53. Białko LIF6 jest transportowane do mitochondriów, gdzie prowadzi do uwolnienia do cytozolu cytochromu c, pełniącego funkcję cząsteczki wyzwalającej apoptozę. Nowotwory u słoni występują stosunkowo rzadko, zwłaszcza jeśli weźmie się pod uwagę dużą liczbę komórek ciała słoni oraz długość życia tych zwierząt.

Na podstawie: J.M. Vazquez i in., A Zombie LIF Gene in Elephants […], „Cell Reports” 24(7), 2018;
M. Sulak i in., TP53 Copy Number Expansion […], „eLife” 5, 2016.

2.1. (0–1)

Wyjaśnij, dlaczego zatrzymanie cyklu komórkowego komórek z uszkodzonym DNA w punkcie kontrolnym G1/S skutkuje ograniczeniem powstawania nowotworów.

2.2. (0–2)

Do każdej z podanych poniżej cech genomu trąbowców (1–2) przyporządkuj odpowiedni mechanizm przeciwnowotworowy (A–D), który jest warunkowany bezpośrednio przez tę cechę.

  1. obecność wielu retrogenów TP53
  2. obecność genu LIF6
  1. Po wykryciu uszkodzenia DNA komórki łatwiej wchodzą na drogę apoptozy.
  2. DNA w komórkach jest mniej podatny na działanie czynników mutagennych.
  3. Uszkodzenia DNA się kumulują, ale nie zaburzają kontroli cyklu komórkowego.
  4. Nawet niewielkie uszkodzenia DNA zatrzymują komórkę w punkcie kontrolnym G1/S.

Matura Czerwiec 2024, Poziom rozszerzony (Formuła 2015)Zadanie 22. (2 pkt)

Inżynieria i badania genetyczne Wpływ człowieka na środowisko i jego ochrona Podaj i uzasadnij/wyjaśnij

Glifosat jest jednym z najczęściej stosowanych herbicydów. Jego działanie polega na zahamowaniu szlaku metabolicznego, który umożliwia roślinom, grzybom i bakteriom syntezę aminokwasów aromatycznych – dla zwierząt aminokwasy aromatyczne są związkami egzogennymi. W 1996 roku wprowadzono na rynek modyfikowaną genetycznie soję zawierającą gen kodujący kluczowy enzym opisanego szlaku, zmieniony tak, aby był odporny na działanie glifosatu. Dzięki temu rośliny soi mogą rosnąć i wydawać plony w obecności herbicydu. Od tego czasu opracowano też odmiany soi z innymi modyfikacjami genetycznymi, zapewniające odporność na inne herbicydy, na szkodniki czy ze zmienioną zawartością kwasów tłuszczowych. W 2018 roku soja stanowiła około 50% transgenicznych upraw.

Na podstawie: K. Kumar i in., Genetically Modified Crops […], „Planta” 251(5), 2020.

22.1. (0–1)

Wykaż, że stosowanie dużych ilości glifosatu może stanowić zagrożenie dla różnorodności biologicznej.

22.2. (0–1)

Wyjaśnij, dlaczego glifosat jest nieskuteczny w zwalczaniu szkodników owadzich.

Matura Czerwiec 2024, Poziom rozszerzony (Formuła 2015)Zadanie 18. (4 pkt)

Dziedziczenie Podaj i uzasadnij/wyjaśnij Pozostałe

Hemofilia typu B jest chorobą dziedziczoną w sposób recesywny, sprzężony z płcią.

Na podstawie: C. Lee i in. (red.), Textbook of Hemophilia, Singapur 2010.

18.1. (0–3)

Dwójka zdrowych rodziców ma syna, który cierpi na hemofilię typu B.

Określ genotypy rodziców. Zapisz krzyżówkę genetyczną i na jej podstawie określ prawdopodobieństwo urodzenia się tym rodzicom dziecka chorego na hemofilię typu B. Allel dominujący oznacz jako H, a allel recesywny – jako h.

Genotypy rodziców:
ojciec –
matka –

Krzyżówka:

matka
ojciec

Prawdopodobieństwo urodzenia się dziecka chorego na hemofilię typu B: %

18.2. (0–1)

Wykaż, że mężczyźni nie mogą być nosicielami hemofilii typu B.

Matura Czerwiec 2024, Poziom rozszerzony (Formuła 2023)Zadanie 22. (2 pkt)

Wpływ człowieka na środowisko i jego ochrona Inżynieria i badania genetyczne Podaj i uzasadnij/wyjaśnij

Glifosat jest jednym z najczęściej stosowanych herbicydów. Jego działanie polega na zahamowaniu szlaku metabolicznego, który umożliwia roślinom, grzybom i bakteriom syntezę aminokwasów aromatycznych – dla zwierząt aminokwasy aromatyczne są związkami egzogennymi. W 1996 roku wprowadzono na rynek modyfikowaną genetycznie soję zawierającą gen kodujący kluczowy enzym opisanego szlaku, zmieniony tak, aby był odporny na działanie glifosatu. Dzięki temu rośliny soi mogą rosnąć i wydawać plony w obecności herbicydu. Od tego czasu opracowano też odmiany soi z innymi modyfikacjami genetycznymi, zapewniające odporność na inne herbicydy, na szkodniki czy ze zmienioną zawartością kwasów tłuszczowych. W 2018 roku soja stanowiła około 50% transgenicznych upraw.

Na podstawie: K. Kumar i in., Genetically Modified Crops […], „Planta” 251(5), 2020.

22.1. (0–1)

Wykaż, że stosowanie dużych ilości glifosatu może stanowić zagrożenie dla różnorodności biologicznej.

22.2. (0–1)

Wyjaśnij, dlaczego glifosat jest nieskuteczny w zwalczaniu szkodników owadzich.

Matura Czerwiec 2024, Poziom rozszerzony (Formuła 2023)Zadanie 18. (4 pkt)

Dziedziczenie Podaj i uzasadnij/wyjaśnij Pozostałe

Hemofilia typu B jest chorobą dziedziczoną w sposób recesywny, sprzężony z płcią.

Na podstawie: C. Lee i in. (red.), Textbook of Hemophilia, Singapur 2010.

18.1. (0–3)

Dwójka zdrowych rodziców ma syna, który cierpi na hemofilię typu B.

Określ genotypy rodziców. Zapisz krzyżówkę genetyczną i na jej podstawie określ prawdopodobieństwo urodzenia się tym rodzicom dziecka chorego na hemofilię typu B. Allel dominujący oznacz jako H, a allel recesywny – jako h.

Genotypy rodziców:
ojciec –
matka –

Krzyżówka:

matka
ojciec

Prawdopodobieństwo urodzenia się dziecka chorego na hemofilię typu B: %

18.2. (0–1)

Wykaż, że mężczyźni nie mogą być nosicielami hemofilii typu B.

Matura Maj 2024, Poziom rozszerzony (Formuła 2015)Zadanie 20. (2 pkt)

Mutacje Zamknięte (np. testowe, prawda/fałsz)

Przewlekła białaczka szpikowa to choroba o podłożu genetycznym. W komórce macierzystej szpiku kostnego w wyniku mutacji powstaje fuzyjny gen składający się z fragmentów dwóch genów: BCR oraz ABL1. Funkcja genu BCR jest nieznana. Gen ABL1 koduje enzym – kinazę tyrozynową, która fosforyluje różne białka i wpływa w ten sposób na procesy komórkowe. Komórka szpiku kostnego z fuzją genów BCR i ABL1 nie podlega wewnątrzkomórkowym procesom regulującym podziały komórkowe i dzieli się w sposób niekontrolowany, co prowadzi do rozwoju nowotworu.

Na poniższym schemacie przedstawiono strukturę chromosomów przed mutacją i po mutacji.

Na podstawie: J. Żołnierowicz i in., Patogeneza przewlekłej białaczki szpikowej – od genu do terapii celowanej, „Hematologia” 1(3), 2010.

20.1. (0–1)

Dokończ zdanie. Zaznacz właściwą odpowiedź spośród podanych.

Przyczyną przewlekłej białaczki szpikowej jest

  1. duplikacja.
  2. inwersja.
  3. translokacja.
  4. transkrypcja.

20.2. (0–1)

Oceń, czy poniższe stwierdzenia dotyczące mutacji będącej przyczyną przewlekłej białaczki szpikowej są prawdziwe. Zaznacz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

1. Opisana mutacja powoduje zmiany w strukturze chromosomów oraz w ich liczbie. P F
2. Zmiany w strukturze chromosomów 9 i 22 – charakterystyczne dla przewlekłej białaczki szpikowej – są widoczne w kariotypie. P F

Matura Maj 2024, Poziom rozszerzony (Formuła 2015)Zadanie 19. (2 pkt)

Ekspresja informacji genetycznej Zamknięte (np. testowe, prawda/fałsz) Podaj/wymień

Ekspresja informacji genetycznej u eukariontów składa się z trzech etapów: z transkrypcji, z obróbki potranskrypcyjnej i z translacji.

Na poniższym schemacie przedstawiono w uproszczony sposób fragment sekwencji nukleotydowej nici matrycowej DNA. Kolorem pomarańczowym zaznaczono sekwencję promotorową, a kolorem niebieskim – introny. Sekwencje nukleotydowe eksonów ujęto w ramki.

19.1. (0–1)

Jaką sekwencję nukleotydową będzie miał fragment dojrzałego mRNA transkrybowany na podstawie przedstawionej nici matrycowej? Zaznacz właściwą odpowiedź spośród podanych.

  1. 5′ UAUUAUACUGCUACGGGCGCACAACGUAUGCCAUGACAAUU 3′
  2. 5′ AUAAUAUGACGAUGCCCGCGUGUUGCAUACGGUACUGUUAA 3′
  3. 5′ AUGACGAUGCCCGCGUGUGUGUGAUGCAUACGGUAC 3′
  4. 5′ AUGACGAUGCCCGCGUGUUGCAUACGGUACUGUUAA 3′

19.2. (0–1)

Podaj sekwencję aminokwasową kodowaną przez pierwszy ekson przedstawionego genu. Odpowiedź zapisz od końca aminowego do końca karboksylowego, z wykorzystaniem pełnych nazw aminokwasów lub ich oznaczeń trójliterowych.

Matura Maj 2024, Poziom rozszerzony (Formuła 2015)Zadanie 18. (3 pkt)

Ekspresja informacji genetycznej Zamknięte (np. testowe, prawda/fałsz) Podaj/wymień

Na poniższym schemacie przedstawiono budowę przestrzenną cząsteczki tRNA.

Na podstawie: pdb101.rcsb.org

18.1. (0–1)

Dokończ zdanie. Zaznacz odpowiedź A albo B oraz odpowiedź 1. albo 2.

Cząsteczki tRNA są zbudowane

A. z jednej nici, a w budowie przestrzennej tRNA komplementarne odcinki nici są położone 1. w przeciwnej orientacji.
B. z dwóch nici, 2. w tej samej orientacji.

18.2. (0–2)

Określ funkcję pełnioną przez ramię akceptorowe oraz funkcję pełnioną przez antykodon cząsteczki tRNA.

Ramię akceptorowe:

Antykodon:

Matura Maj 2024, Poziom rozszerzony (Formuła 2015)Zadanie 16. (4 pkt)

Dziedziczenie Uzupełnij/narysuj wykres, schemat lub tabelę Pozostałe

Tułów ryby – brzanki sumatrzańskiej (Puntigrus tetrazona) – przecinają trzy poprzeczne czarne paski, ciągnące się od grzbietu do brzucha. Na poniższym zdjęciu przedstawiono trzy możliwe wzory paskowania występujące u brzanki sumatrzańskiej (1.–3.), różniące się długością paska oznaczonego strzałką.

Wzór paskowania brzanki sumatrzańskiej zależy od dwóch niesprzężonych ze sobą loci – A i B z allelami dominującymi (A i B) i recesywnymi (a i b):

  • wzór 1. – obecność co najmniej jednego allelu dominującego w każdym z obu loci daje wzór pełnego paskowania
  • wzór 2. – homozygotyczność recesywna tylko w jednym z loci powoduje skrócenie paska środkowego, który jednak przecina linię naboczną
  • wzór 3. – podwójna homozygotyczność recesywna sprawia, że pasek środkowy jest skrócony o połowę i kończy się na linii nabocznej.
Na podstawie: Z. Nowak (red.), Genetyka zwierząt w teorii i praktyce, Warszawa 2015;
J.S. Frankel, Inheritance of Trunk Striping in the Sumatran Tiger Barb […], „Journal of Heredity” 76, 1985
Fotografia: J.S. Frankel, How a Banded Barb Gets its Stripes, „AMAZONAS” 3(6), 2014.

16.1. (0–2)

Uzupełnij tabelę – dla każdego z fenotypów brzanki sumatrzańskiej wymienionych w tabeli zapisz wszystkie możliwe genotypy warunkujące dany fenotyp. Zastosuj oznaczenia alleli podane w tekście.

Fenotyp Możliwe genotypy
pełne paskowanie – wzór 1.
skrócony pasek środkowy przecinający linię naboczną – wzór 2.

16.2. (0–2)

Zapisz krzyżówkę genetyczną i na jej podstawie podaj oczekiwany rozkład wzoru paskowania wśród potomstwa dwóch podwójnie heterozygotycznych osobników brzanki sumatrzańskiej.

Krzyżówka genetyczna:

Wzór paskowania wzór 1. wzór 2. wzór 3.
Oczekiwane proporcje : :

Matura Maj 2024, Poziom rozszerzony (Formuła 2015)Zadanie 5. (5 pkt)

Prokarionty Skład organizmów Budowa i funkcje komórki Inżynieria i badania genetyczne Zamknięte (np. testowe, prawda/fałsz) Podaj i uzasadnij/wyjaśnij Podaj/wymień

Wiele bakterii to ekstremofile – organizmy żyjące w ekstremalnych warunkach środowiskowych. Skrajne wartości określonych czynników fizycznych i chemicznych są warunkiem koniecznym do prawidłowego zajścia procesów metabolicznych u ekstremofili.

W zależności od wartości optymalnej temperatury wzrostu wyróżnia się wśród ekstremofili:

  • psychrofile – organizmy, które nie rosną w temperaturze powyżej 20 °C, a optymalne warunki do ich rozwoju stwarza temperatura poniżej 15 °C. Psychrofile wykształciły wiele adaptacji do niskich wartości temperatury, wśród których można wyróżnić mechanizmy chroniące przed nadmiernym zmniejszeniem płynności ich błon komórkowych;
  • termofile – organizmy, których optymalna temperatura wzrostu wynosi ponad 50 °C. Maksymalna temperatura umożliwiająca życie wynosi 122 °C. Wysoka temperatura powoduje wzrost płynności błony komórkowej oraz destabilizuje strukturę białek i kwasów nukleinowych termofili. Z tego powodu w białkach termofili znajdują się liczne mostki disiarczkowe, a cząsteczki rRNA i tRNA mają wysoką zawartość par zasad GC.

Enzymy wytwarzane przez ekstremofile są wykorzystywane w biotechnologii.

Na podstawie: A. Zabłotni, A. Dziadosz, Ekstremofile – mikroorganizmy z przeszłością i z przyszłością, „Postępy Mikrobiologii” 52(4), 2013.

5.1. (0–1)

Określ, które z poniższych modyfikacji składu chemicznego lipidów błony komórkowej stanowią adaptację do życia w niskiej temperaturze. Zaznacz T, jeśli modyfikacja jest adaptacją do życia w niskiej temperaturze, albo N – jeśli nią nie jest.

1. Wzrost zawartości nasyconych kwasów tłuszczowych. T N
2. Wzrost zawartości krótkich kwasów tłuszczowych. T N

5.2. (0–1)

Podaj nazwę aminokwasu niezbędnego do wytworzenia mostków disiarczkowych, stabilizujących strukturę przestrzenną białek bakterii termofilnych.

5.3. (0–1)

Wykaż, że stabilność cząsteczek rRNA i tRNA bakterii termofilnych zwiększa się wraz ze wzrostem zawartości w ich cząsteczkach par zasad GC kosztem zawartości par zasad AU.

5.4. (0–1)

Określ, która grupa organizmów – psychrofile czy termofile – stanowi źródło polimeraz DNA wykorzystywanych do PCR. Odpowiedź uzasadnij.

5.5. (0–1)

Która cecha występuje u bakterii – organizmów prokariotycznych? Zaznacz właściwą odpowiedź spośród podanych.

  1. obecność mitochondriów
  2. rybosomy o współczynniku sedymentacji równym 80S
  3. chityna jako główny składnik ściany komórkowej
  4. translacja cząsteczki mRNA rozpoczynająca się przed zakończeniem jej syntezy

Matura Maj 2024, Poziom rozszerzony (Formuła 2023)Zadanie 19. (2 pkt)

Mutacje Zamknięte (np. testowe, prawda/fałsz)

Przewlekła białaczka szpikowa to choroba o podłożu genetycznym. W komórce macierzystej szpiku kostnego w wyniku mutacji powstaje fuzyjny gen składający się z fragmentów dwóch genów: BCR oraz ABL1. Funkcja genu BCR jest nieznana. Gen ABL1 koduje enzym – kinazę tyrozynową, która fosforyluje różne białka i wpływa w ten sposób na procesy komórkowe. Komórka szpiku kostnego z fuzją genów BCR i ABL1 nie podlega wewnątrzkomórkowym procesom regulującym podziały komórkowe i dzieli się w sposób niekontrolowany, co prowadzi do rozwoju nowotworu.

Na poniższym schemacie przedstawiono strukturę chromosomów przed mutacją i po mutacji.

Na podstawie: J. Żołnierowicz i in., Patogeneza przewlekłej białaczki szpikowej – od genu do terapii celowanej, „Hematologia” 1(3), 2010.

19.1. (0–1)

Dokończ zdanie. Zaznacz właściwą odpowiedź spośród podanych.

Przyczyną przewlekłej białaczki szpikowej jest

  1. duplikacja.
  2. inwersja.
  3. translokacja.
  4. transkrypcja.

19.2. (0–1)

Oceń, czy poniższe stwierdzenia dotyczące mutacji będącej przyczyną przewlekłej białaczki szpikowej są prawdziwe. Zaznacz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

1. Opisana mutacja powoduje zmiany w strukturze chromosomów oraz w ich liczbie. P F
2. Zmiany w strukturze chromosomów 9 i 22 – charakterystyczne dla przewlekłej białaczki szpikowej – są widoczne w kariotypie. P F

Matura Maj 2024, Poziom rozszerzony (Formuła 2023)Zadanie 18. (2 pkt)

Ekspresja informacji genetycznej Zamknięte (np. testowe, prawda/fałsz) Podaj/wymień

Ekspresja informacji genetycznej u eukariontów składa się z trzech etapów: z transkrypcji, z obróbki potranskrypcyjnej i z translacji.

Na poniższym schemacie przedstawiono w uproszczony sposób fragment sekwencji nukleotydowej nici matrycowej DNA. Kolorem pomarańczowym zaznaczono sekwencję promotorową, a kolorem niebieskim – introny. Sekwencje nukleotydowe eksonów ujęto w ramki.

18.1. (0–1)

Jaką sekwencję nukleotydową będzie miał fragment dojrzałego mRNA transkrybowany na podstawie przedstawionej nici matrycowej? Zaznacz właściwą odpowiedź spośród podanych.

  1. 5′ UAUUAUACUGCUACGGGCGCACAACGUAUGCCAUGACAAUU 3′
  2. 5′ AUAAUAUGACGAUGCCCGCGUGUUGCAUACGGUACUGUUAA 3′
  3. 5′ AUGACGAUGCCCGCGUGUGUGUGAUGCAUACGGUAC 3′
  4. 5′ AUGACGAUGCCCGCGUGUUGCAUACGGUACUGUUAA 3′

18.2. (0–1)

Podaj sekwencję aminokwasową kodowaną przez pierwszy ekson przedstawionego genu. Odpowiedź zapisz od końca aminowego do końca karboksylowego, z wykorzystaniem pełnych nazw aminokwasów lub ich oznaczeń trójliterowych.

Matura Maj 2024, Poziom rozszerzony (Formuła 2023)Zadanie 17. (3 pkt)

Ekspresja informacji genetycznej Zamknięte (np. testowe, prawda/fałsz) Podaj/wymień

Na poniższym schemacie przedstawiono budowę przestrzenną cząsteczki tRNA.

Na podstawie: pdb101.rcsb.org

17.1. (0–1)

Dokończ zdanie. Zaznacz odpowiedź A albo B oraz odpowiedź 1. albo 2.

Cząsteczki tRNA są zbudowane

A. z jednej nici, a w budowie przestrzennej tRNA komplementarne odcinki nici są położone 1. w przeciwnej orientacji.
B. z dwóch nici, 2. w tej samej orientacji.

17.2. (0–2)

Określ funkcję pełnioną przez ramię akceptorowe oraz funkcję pełnioną przez antykodon cząsteczki tRNA.

Ramię akceptorowe:

Antykodon:

Matura Maj 2024, Poziom rozszerzony (Formuła 2023)Zadanie 16. (4 pkt)

Dziedziczenie Uzupełnij/narysuj wykres, schemat lub tabelę Pozostałe

Tułów ryby – brzanki sumatrzańskiej (Puntigrus tetrazona) – przecinają trzy poprzeczne czarne paski, ciągnące się od grzbietu do brzucha. Na poniższym zdjęciu przedstawiono trzy możliwe wzory paskowania występujące u brzanki sumatrzańskiej (1.–3.), różniące się długością paska oznaczonego strzałką.

Wzór paskowania brzanki sumatrzańskiej zależy od dwóch niesprzężonych ze sobą loci – A i B z allelami dominującymi (A i B) i recesywnymi (a i b):

  • wzór 1. – obecność co najmniej jednego allelu dominującego w każdym z obu loci daje wzór pełnego paskowania
  • wzór 2. – homozygotyczność recesywna tylko w jednym z loci powoduje skrócenie paska środkowego, który jednak przecina linię naboczną
  • wzór 3. – podwójna homozygotyczność recesywna sprawia, że pasek środkowy jest skrócony o połowę i kończy się na linii nabocznej.
Na podstawie: Z. Nowak (red.), Genetyka zwierząt w teorii i praktyce, Warszawa 2015;
J.S. Frankel, Inheritance of Trunk Striping in the Sumatran Tiger Barb […], „Journal of Heredity” 76, 1985
Fotografia: J.S. Frankel, How a Banded Barb Gets its Stripes, „AMAZONAS” 3(6), 2014.

16.1. (0–2)

Uzupełnij tabelę – dla każdego z fenotypów brzanki sumatrzańskiej wymienionych w tabeli zapisz wszystkie możliwe genotypy warunkujące dany fenotyp. Zastosuj oznaczenia alleli podane w tekście.

Fenotyp Możliwe genotypy
pełne paskowanie – wzór 1.
skrócony pasek środkowy przecinający linię naboczną – wzór 2.

16.2. (0–2)

Zapisz krzyżówkę genetyczną i na jej podstawie podaj oczekiwany rozkład wzoru paskowania wśród potomstwa dwóch podwójnie heterozygotycznych osobników brzanki sumatrzańskiej.

Krzyżówka genetyczna:

Wzór paskowania wzór 1. wzór 2. wzór 3.
Oczekiwane proporcje : :

Matura Maj 2024, Poziom rozszerzony (Formuła 2023)Zadanie 15. (5 pkt)

Budowa i funkcje komórki Dziedziczenie Oddychanie komórkowe Podaj i uzasadnij/wyjaśnij Zamknięte (np. testowe, prawda/fałsz)

Funkcjonowanie mitochondriów znajduje się pod kontrolą dwóch genomów, ale większość białek mitochondrialnych jest kodowana przez genom jądrowy. Mutacje zarówno w DNA mitochondrialnym (mtDNA), jak i w DNA jądrowym (nDNA) mogą być przyczyną chorób mitochondrialnych (czasem mutacje dotyczą obu genomów).

Komórka zawiera kilka tysięcy mitochondriów, a w każdym z nich znajduje się kilka cząsteczek mtDNA. Te cząsteczki nie zawsze są identyczne. To zjawisko nazywa się heteroplazmią. Podczas podziału komórki mitochondria są rozdzielane losowo do komórek potomnych, a więc objawy choroby zależą od stosunku ilości prawidłowego mtDNA do ilości zmutowanego mtDNA i pojawiają się po przekroczeniu pewnej wartości progowej, różnej dla różnych tkanek i narządów.

Choroby mitochondrialne to głównie schorzenia wynikające z nieprawidłowego funkcjonowania łańcucha oddechowego. U około 70% osób cierpiących na choroby mitochondrialne stwierdza się podwyższone stężenie kwasu mlekowego w surowicy krwi.

Nie można przewidzieć, ile zmutowanego mtDNA znajdzie się w oocytach kobiety chorującej na chorobę mitochondrialną. Nie wiadomo także, jak mitochondria będą segregowane do różnych tkanek w czasie embriogenezy.

Na podstawie: A. Piotrowska i in., Choroby mitochondrialne, „Postępy Biochemii” 62(2), 2016.

15.1. (0–1)

Wykaż, że mitochondria są organellami półautonomicznymi.

15.2. (0–2)

Oceń, czy poniższe stwierdzenia dotyczące chorób mitochondrialnych są prawdziwe. Zaznacz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

1. Jeżeli przyczyną choroby mitochondrialnej jest mutacja autosomalna, to choroba dziedziczy się zgodnie z pierwszym prawem Mendla. P F
2. Dzieci mężczyzny, u którego stwierdzono mutację w genomie mitochondrialnym, odziedziczą zaburzenia metaboliczne związane z uszkodzeniami mitochondriów. P F
3. Zdiagnozowanie u kobiety choroby spowodowanej mutacją w genomie mitochondrialnym oznacza, że u jej dzieci wystąpią takie same objawy o takim samym nasileniu. P F

15.3. (0–2)

Uzupełnij poniższe zdanie tak, aby w poprawny sposób opisywało konsekwencje metaboliczne choroby mitochondrialnej u ludzi. W każdym nawiasie podkreśl właściwe określenie.

Niedobór ATP wywołany chorobą mitochondrialną jest sygnałem do wzmożonej (glikolizy / glikogenogenezy), w wyniku której powstaje (pirogronian / glikogen) – związek w dużej części bezpośrednio przekształcany na szlaku przemian beztlenowych w (mleczan / etanol).

Matura Maj 2024, Poziom rozszerzony (Formuła 2023)Zadanie 5. (5 pkt)

Prokarionty Skład organizmów Budowa i funkcje komórki Inżynieria i badania genetyczne Zamknięte (np. testowe, prawda/fałsz) Podaj i uzasadnij/wyjaśnij Podaj/wymień

Wiele bakterii to ekstremofile – organizmy żyjące w ekstremalnych warunkach środowiskowych. Skrajne wartości określonych czynników fizycznych i chemicznych są warunkiem koniecznym do prawidłowego zajścia procesów metabolicznych u ekstremofili.

W zależności od wartości optymalnej temperatury wzrostu wyróżnia się wśród ekstremofili:

  • psychrofile – organizmy, które nie rosną w temperaturze powyżej 20 °C, a optymalne warunki do ich rozwoju stwarza temperatura poniżej 15 °C. Psychrofile wykształciły wiele adaptacji do niskich wartości temperatury, wśród których można wyróżnić mechanizmy chroniące przed nadmiernym zmniejszeniem płynności ich błon komórkowych;
  • termofile – organizmy, których optymalna temperatura wzrostu wynosi ponad 50 °C. Maksymalna temperatura umożliwiająca życie wynosi 122 °C. Wysoka temperatura powoduje wzrost płynności błony komórkowej oraz destabilizuje strukturę białek i kwasów nukleinowych termofili. Z tego powodu w białkach termofili znajdują się liczne mostki disiarczkowe, a cząsteczki rRNA i tRNA mają wysoką zawartość par zasad GC.

Enzymy wytwarzane przez ekstremofile są wykorzystywane w biotechnologii.

Na podstawie: A. Zabłotni, A. Dziadosz, Ekstremofile – mikroorganizmy z przeszłością i z przyszłością, „Postępy Mikrobiologii” 52(4), 2013.

5.1. (0–1)

Określ, które z poniższych modyfikacji składu chemicznego lipidów błony komórkowej stanowią adaptację do życia w niskiej temperaturze. Zaznacz T, jeśli modyfikacja jest adaptacją do życia w niskiej temperaturze, albo N – jeśli nią nie jest.

1. Wzrost zawartości nasyconych kwasów tłuszczowych. T N
2. Wzrost zawartości krótkich kwasów tłuszczowych. T N

5.2. (0–1)

Podaj nazwę aminokwasu niezbędnego do wytworzenia mostków disiarczkowych, stabilizujących strukturę przestrzenną białek bakterii termofilnych.

5.3. (0–1)

Wykaż, że stabilność cząsteczek rRNA i tRNA bakterii termofilnych zwiększa się wraz ze wzrostem zawartości w ich cząsteczkach par zasad GC kosztem zawartości par zasad AU.

5.4. (0–1)

Określ, która grupa organizmów – psychrofile czy termofile – stanowi źródło polimeraz DNA wykorzystywanych do PCR. Odpowiedź uzasadnij.

5.5. (0–1)

Która cecha występuje u bakterii – organizmów prokariotycznych? Zaznacz właściwą odpowiedź spośród podanych.

  1. obecność mitochondriów
  2. rybosomy o współczynniku sedymentacji równym 80S
  3. chityna jako główny składnik ściany komórkowej
  4. translacja cząsteczki mRNA rozpoczynająca się przed zakończeniem jej syntezy

Strony