Zadania maturalne z chemii

Znalezionych zadań - 1635

Strony

511

Matura Czerwiec 2021, Poziom rozszerzony (Formuła 2015)Zadanie 36. (1 pkt)

Kwasy karboksylowe Narysuj/zapisz wzór

Nasycony związek organiczny X o czterech atomach węgla zawiera w cząsteczce dwie różne grupy funkcyjne, które reagują z sodem, ale tylko jedna z nich – z wodorotlenkiem sodu.
W wyniku utleniania związku X za pomocą jonów dichromianowych(VI) w obecności jonów H+ otrzymuje się kwas bursztynowy o wzorze HOOC−CH2−CH2−COOH.

W wysokiej temperaturze kwas bursztynowy HOOC−CH2−CH2−COOH ulega odwodnieniu. Jedna cząsteczka kwasu bursztynowego odszczepia jedną cząsteczkę wody i tworzy bezwodnik, którego cząsteczka ma strukturę pierścienia pięcioczłonowego.

Narysuj wzór półstrukturany (grupowy) bezwodnika kwasu bursztynowego.

512
513

Informator CKE, Poziom rozszerzony (Formuła 2023)Zadanie 37. (1 pkt)

Elektrochemia - pozostałe Podaj i uzasadnij/wyjaśnij

W analizie potencjometrycznej wykorzystuje się zależność potencjału odpowiednich elektrod od stężenia jonów oznaczanych. Pomiary potencjometryczne polegają na mierzeniu SEM ogniwa zestawionego z dwóch półogniw: tzw. elektrody wskaźnikowej, zanurzonej w badanym roztworze, oraz tzw. elektrody odniesienia, zanurzonej w roztworze o niezmiennym składzie, której potencjał w warunkach pomiaru pozostaje stały.

Rozróżnia się dwa główne typy elektrod. Elektrody pierwszego rodzaju to elektrody odwracalne względem kationu: są zbudowane z metalu i są w równowadze z roztworem zawierającym jony tego metalu (M oznacza symbol metalu):

M(s) + ⇄ Mn+(aq) + 𝑛e

Elektrody drugiego rodzaju są odwracalne względem anionu, tworzącego z metalem elektrody trudno rozpuszczalny związek. Elektrodą drugiego rodzaju jest elektroda halogenosrebrowa. Działanie tej elektrody opisuje równanie (X oznacza symbol halogenu):

AgX(s) + e ⇄ Ag(s) + X(aq)

Na podstawie: W. Szczepaniak, Metody instrumentalne w analizie chemicznej, Warszawa 2008 oraz A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Podstawy chemii analitycznej, Warszawa 2007.

Przykładem elektrody halogenosrebrowej jest elektroda chlorosrebrowa:

Na podstawie: E. Generalic, https://glossary.periodni.com/glossary.php?en=silver%2Fsilver-chloride+electrode [ dostęp: 15.07.2020]

Działanie elektrody chlorosrebrowej opisuje równanie:

AgCl(s) + e ⇄ Ag(s) + Cl (aq)

Potencjał tej elektrody zależy od stężenia jonów chlorkowych w roztworze, który stanowi jej element, i wyraża się równaniem: EAg/AgCl = EoAg/AgCl − 0,059log cCl (w temperaturze 298 K).
Przygotowano dwie elektrody chlorosrebrowe: elektroda I zawierała wodny roztwór chlorku potasu o stężeniu równym 0,10 mol ∙ dm–3, a elektroda II – wodny roztwór tej samej soli o stężeniu równym 0,01 mol ∙ dm–3

Rozstrzygnij, która elektroda chlorosrebrowa (I czy II) ma – w tej samej temperaturze – wyższy potencjał. Odpowiedź uzasadnij.

Rozstrzygnięcie:

Uzasadnienie:

514
515

Matura Marzec 2021, Poziom rozszerzony (Formuła 2015)Zadanie 38. (1 pkt)

Chemia wokół nas Zamknięte (np. testowe, prawda/fałsz)

Oceń, czy podane poniżej informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, albo F – jeśli jest fałszywa.

1. Proces fermentacji octowej zachodzi w warunkach beztlenowych. P F
2. Podczas wyrobu ciasta drożdżowego zachodzi proces fermentacji alkoholowej. P F
3. Podczas kiszenia kapusty powstaje kwas mlekowy. P F
516

Informator CKE, Poziom rozszerzony (Formuła 2023)Zadanie 38. (1 pkt)

Elektrochemia - pozostałe Napisz równanie reakcji

W analizie potencjometrycznej wykorzystuje się zależność potencjału odpowiednich elektrod od stężenia jonów oznaczanych. Pomiary potencjometryczne polegają na mierzeniu SEM ogniwa zestawionego z dwóch półogniw: tzw. elektrody wskaźnikowej, zanurzonej w badanym roztworze, oraz tzw. elektrody odniesienia, zanurzonej w roztworze o niezmiennym składzie, której potencjał w warunkach pomiaru pozostaje stały.

Rozróżnia się dwa główne typy elektrod. Elektrody pierwszego rodzaju to elektrody odwracalne względem kationu: są zbudowane z metalu i są w równowadze z roztworem zawierającym jony tego metalu (M oznacza symbol metalu):

M(s) + ⇄ Mn+(aq) + 𝑛e

Elektrody drugiego rodzaju są odwracalne względem anionu, tworzącego z metalem elektrody trudno rozpuszczalny związek. Elektrodą drugiego rodzaju jest elektroda halogenosrebrowa. Działanie tej elektrody opisuje równanie (X oznacza symbol halogenu):

AgX(s) + e ⇄ Ag(s) + X(aq)

Na podstawie: W. Szczepaniak, Metody instrumentalne w analizie chemicznej, Warszawa 2008 oraz A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Podstawy chemii analitycznej, Warszawa 2007.

Jako elektroda odniesienia w opisanym miareczkowaniu potencjometrycznym może być zastosowana tzw. nasycona elektroda kalomelowa.

Schemat tej elektrody przedstawiono poniżej:

Hg │ Hg2Cl2 (s), KCl ( roztwór nasycony)

Zasada działania tej elektrody jest taka sama jak elektrody chlorosrebrowej.

Napisz równanie reakcji elektrodowej zachodzącej w elektrodzie kalomelowej.

517

Matura Czerwiec 2021, Poziom rozszerzony (Formuła 2015)Zadanie 38. (2 pkt)

Peptydy i białka Zaprojektuj doświadczenie

Glutation to tripeptyd występujący w komórkach organizmów roślinnych i zwierzęcych. Poniżej przedstawiono jego wzór półstrukturalny (grupowy).

Wykonano doświadczenie, w którym do dwóch probówek z tym samym odczynnikiem wprowadzono wodne roztwory:

  • do probówki I – wodny roztwór glutationu
  • do probówki II – wodny roztwór powstały po całkowitej hydrolizie glutationu.

W jednej z probówek zaobserwowano powstanie różowofioletowego roztworu.

Uzupełnij schemat doświadczenia. Podkreśl nazwę odczynnika, który – po dodaniu do niego roztworów glutationu oraz produktów jego hydrolizy i wymieszaniu zawartości każdej probówki – pozwoli na uzyskanie opisanego wyniku doświadczenia. Napisz numer probówki, w której zaobserwowano opisaną zmianę.

Numer probówki:

518

Informator CKE, Poziom rozszerzony (Formuła 2023)Zadanie 39. (5 pkt)

Bilans elektronowy Elektroliza Napisz równanie reakcji Zamknięte (np. testowe, prawda/fałsz) Oblicz
Zadanie usunięte przez CKE z wersji informatora dla egzaminu maturalnego od roku szkolnego 2024/2025 jako niezgodne z podstawą programową.

Heksacyjanożelazian(II) potasu to sól zawierająca kompleksowy jon o wzorze [Fe(CN)6]4–. Zawartość tego związku w badanej próbce można określić na podstawie jego reakcji ze znaną ilością bromu.
Przeprowadzono doświadczenie, którego celem było określenie liczby moli heksacyjanożelazianu(II) potasu w roztworze. Aby przygotować roztwór bromu o znanym stężeniu, zastosowano metodę elektrolitycznego wytwarzania bromu w układzie dwóch elektrod platynowych. W tym celu w zlewce umieszczono roztwór bromku potasu i kwasu siarkowego(VI) o znanym stężeniu. Następnie do tego roztworu dodano próbkę K4Fe(CN)6 o nieznanym stężeniu. W tak sporządzonym roztworze zanurzono dwie platynowe elektrody oznaczone symbolami E1 oraz E2 i przeprowadzono elektrolizę prądem o natężeniu 0,005 A. W jej wyniku wydzielił się brom, który przereagował z K4Fe(CN)6. Wydajność obu reakcji wynosiła 100%.

39.1. (0–1)

Napisz równania reakcji przebiegających na anodzie i na katodzie podczas opisanego procesu wytwarzania bromu.

Anoda:

Katoda:

39.2. (0–1)

Jon heksacyjanożelazianu(II) reaguje z bromem zgodnie ze schematem:

Br2 + Fe(CN)4−6 → Br + Fe(CN)3−6

Napisz w formie jonowej skróconej z uwzględnieniem liczby oddawanych lub pobieranych elektronów (zapis jonowo-elektronowy) równania procesów redukcji i utleniania zachodzących podczas opisanej przemiany.

Równanie reakcji redukcji:

Równanie reakcji utlenienia:

39.3. (0–1)

Czas trwania elektrolizy prowadzącej do otrzymania stechiometrycznej ilości bromu w stosunku do K4Fe(CN)6 określa się w równoległym eksperymencie – w układzie dwóch elektrod platynowych E3 oraz E4. Umieszcza się je w badanym roztworze i przykłada do nich niewielką różnicę potencjałów. Podczas eksperymentu rejestruje się natężenie prądu przepływającego w układzie pomiarowym. Na początku elektrolizy natężenie prądu wzrasta proporcjonalnie do ilości powstających jonów Fe(CN)3−6. Maksymalna wartość natężenia prądu obserwowana jest w chwili, gdy liczba moli jonów Fe(CN)3−6 jest równa liczbie moli jonów Fe(CN)4−6. Następnie natężenie prądu spada prawie do zera i osiąga minimum w momencie całkowitego przereagowania jonów Fe(CN)4−6. W dalszym etapie elektrolizy natężenie prądu przepływającego między elektrodami E3 i E4 wzrasta.

Przeanalizuj poniższe wykresy i zaznacz ten, który odpowiada opisanym zmianom natężenia prądu przepływającego w układzie elektrod oznaczonych symbolami E3 oraz E4.

A.
B.
C.
D.

39.4. (0–2)

Liczba moli elektronów wymienionych podczas elektrolizy jest określona następującym wzorem:

ne = i ∙ tF

gdzie:
i – natężenie prądu, A
t – czas trwania elektrolizy, s
F – stała Faradaya, 96500 C · mol–1.

Oblicz liczbę moli jonów [Fe(CN)6]4– w badanym roztworze. Czas potrzebny do otrzymania stechiometrycznej ilości bromu odczytaj z wykresu wybranego w zadaniu 39.3.

519

Informator CKE, Poziom rozszerzony (Formuła 2023)Zadanie 40. (3 pkt)

Węglowodory - ogólne Podaj i uzasadnij/wyjaśnij

Wzory trzech związków organicznych oznaczono numerami I–III i zestawiono w poniższej tabeli. Te związki różnią się wartościami temperatury wrzenia.

Poniżej przedstawiono – w przypadkowej kolejności – wartości temperatury wrzenia wymienionych związków (pod ciśnieniem 1013 hPa):

27,8°C
36,1°C
68,7°C
Na podstawie: W. Mizerski, Tablice chemiczne, Warszawa 2003.

Przyporządkuj każdemu związkowi charakteryzującą go temperaturę wrzenia. Uzupełnij tabelę. Podaj nazwę systematyczną związku o najwyższej temperaturze wrzenia i nazwę systematyczną związku o najniższej temperaturze wrzenia. W obu przypadkach uzasadnij swoje przyporządkowanie.

Numer związku I II III
Temperatura wrzenia

Nazwa systematyczna związku o najwyższej temperaturze wrzenia:

Uzasadnienie:

Nazwa systematyczna związku o najniższej temperaturze wrzenia:

Uzasadnienie:

520

Informator CKE, Poziom rozszerzony (Formuła 2023)Zadanie 41. (2 pkt)

Węglowodory - ogólne Podaj/wymień
Zadanie usunięte przez CKE z wersji informatora dla egzaminu maturalnego od roku szkolnego 2024/2025 jako niezgodne z podstawą programową.

Jedną z najważniejszych metod fizykochemicznych stosowanych do badania struktury związków organicznych jest spektroskopia magnetycznego rezonansu jądrowego, NMR. Wykorzystuje się w niej właściwość polegającą na tym, że jądra atomów większości pierwiastków mają niezerowy spin. Najczęściej wykorzystuje się izotop wodoru 1H, którego jądra – czyli protony – są opisane liczbą spinową ½. Po umieszczeniu w silnym polu magnetycznym protony mogą się znajdować w dwóch stanach energetycznych – podstawowym i wzbudzonym. Aby wykonać pomiar, umieszcza się próbkę badanego związku w polu magnetycznym i wzbudza jądra 1H za pomocą fal radiowych. Powrót jąder ze stanu wzbudzonego do stanu podstawowego skutkuje wysłaniem sygnału rejestrowanego za pomocą detektora. Częstotliwość tego sygnału zależy od położenia atomów w cząsteczce. Zarejestrowane sygnały tworzą obraz zwany widmem NMR (rysunek poniżej), które dostarcza ważnych informacji o budowie cząsteczki związku.

Liczba sygnałów w widmie jest równa liczbie grup równocennych atomów wodoru w cząsteczce związku. Przykładowo – w cząsteczce octanu etylu obecne są trzy grupy równocennych atomów wodoru: dwie różne grupy –CH3 i jedna grupa –CH2–, czyli w widmie są obecne trzy sygnały. Te sygnały mogą mieć w określonych przypadkach złożony kształt, co w pokazanym widmie skutkuje ich rozszczepieniem (poszerzeniem).

Drugim nuklidem często wykorzystywanym w pomiarach NMR jest izotop węgla 13C, którego zawartość w naturalnym węglu wynosi ok. 1%. Jego jądro ma także spin ½, w odróżnieniu od izotopu 12C, którego jądra mają spin zerowy i dlatego są nieaktywne w NMR. Widma NMR węgla 13C rejestruje się w taki sposób, że sygnały są pojedynczymi liniami.

W cząsteczce octanu etylu są cztery nierównocenne atomy węgla, w związku z czym w widmie 13C są obecne cztery sygnały.

Na podstawie analizy elementarnej ustalono wzór sumaryczny alkanu A: C5H12. Analiza widm NMR dla związku A dała następujące wyniki: w widmie 1H NMR znajduje się jeden sygnał, w widmie 13C NMR znajdują się dwa sygnały. Związek A i jego pochodne poddano przemianom, które ilustruje poniższy schemat:

A +Br2, UV A1 +NaOH, H2O A2 +CuO, T A3

Stwierdzono, że stosunek ilościowy atomów wchodzących w skład cząsteczki związku A3 wynosił NC : NH : NO = 5 : 10 : 1.

Podaj nazwę systematyczną związku A oraz wzór półstrukturalny (grupowy) związku A3 i uzupełnij tabelę: określ liczbę sygnałów w widmach 1H NMR i 13C NMR dla związku A3.

Nazwa systematyczna związku A:

Wzór półstrukturalny (grupowy) związku A3:

Liczba sygnałów dla związku A3
w widmie 1H NMR w widmie 13C NMR

Strony