Atomy, cząsteczki, stechiometria

Oto lista zadań maturalnych z danego działu chemii. Aby skorzystać z dodatkowych opcji lub wybrać zadania z pozostałych działów kliknij poniżej.

Przejdź do wyszukiwarki zadań

 

Zbiór zadań problemowych CKE, Poziom rozszerzony (Formuła 2023)Zadanie 2. (4 pkt)

Prawo stałości składu, ustalanie wzoru Narysuj/zapisz wzór

Rentgenografia strukturalna jest jedyną techniką badawczą, która pozwala, z niemal absolutną pewnością, określać struktury przestrzenne związków chemicznych (np. dokładną strukturę skomplikowanych cząsteczek związków organicznych). Ta technika polega na naświetlaniu kryształu badanego związku promieniami rentgenowskimi. Uzyskany obraz, nazywany obrazem dyfrakcyjnym, poddaje się zaawansowanej obróbce matematycznej, dzięki czemu można wygenerować mapę rozkładu gęstości chmury elektronowej w cząsteczce, która mówi o wzajemnym ułożeniu w przestrzeni atomów tworzących cząsteczkę. Do uzyskanego obrazu można następnie dopasować najbardziej prawdopodobny model cząsteczki.

Na podstawie: J.M. Robertson, I. Woodward, J. Chem. Soc. 1937, 219–230.

Poniżej przedstawiono mapę gęstości elektronowej uzyskaną metodą rentgenografii strukturalnej dla pewnej halogenopochodnej fenolu zawierającej masowo 15,3% węgla.

Wykonaj odpowiednie obliczenia i narysuj wzór strukturalny cząsteczki badanego związku oraz podaj jego nazwę systematyczną.

Nazwa systematyczna:

Informator CKE matury dwujęzycznej (tłumaczenie BiologHelp), Poziom rozszerzony (Formuła 2023)Zadanie 7. (2 pkt)

Stechiometryczny stosunek reagentów pH Podaj i uzasadnij/wyjaśnij Podaj/wymień

W celu przeprowadzenia doświadczenia przygotowano wodne roztwory substancji o wzorach: HCI, H2SO4 i NaOH. Stężenia molowe roztworów były jednakowe: 0,1 mol∙dm–3. W doświadczeniu użyto 10 cm3 roztworów NaOH i HCI oraz pewnej objętości x roztworu H2SO4, jak pokazano na poniższym schemacie:

7.1. (0–1)

Po wymieszaniu odczynników do probówki I dodano kilka kropel roztworu czerwieni Kongo.

Podaj barwę zawartości probówki I po dodaniu roztworu wskaźnika.

7.2. (0–1)

Po wymieszaniu odczynników do probówki II dodano kilka kropel alkoholowego roztworu fenoloftaleiny. Fotografia przedstawia wygląd zawartości tej probówki po dodaniu wskaźnika.

Rozstrzygnij, czy roztwór kwasu siarkowego(VI) dodany do probówki II może mieć objętość 10 cm3. Odpowiedź uzasadnij.

Rozstrzygnięcie:

Uzasadnienie:

Informator CKE matury dwujęzycznej (tłumaczenie BiologHelp), Poziom rozszerzony (Formuła 2023)Zadanie 1. (1 pkt)

Izotopy i promieniotwórczość Podaj/wymień

Jednym z produktów rozszczepienia jądra uranu jest izotop baru, 143Ba. W wyniku czterech kolejnych przemian promieniotwórczych tego samego typu - zapoczątkowanych przez 143Ba - powstaje izotop neodymu, mający w swoim jądrze 83 neutrony. Ta sekwencja przemian jest przedstawiona na poniższym schemacie:

143Ba przemiana 1 X przemiana 2 Y przemiana 3 Q przemiana 4 ANd

Źródło: L. Kolditz (red.), Chemia nieorganiczna, Warszawa 1994.

Podaj wartość liczby masowej A opisanego wyżej izotopu neodymu. Podaj rodzaj przemian (α lub β), w wyniku których ten izotop neodymu powstaje z izotopu 143Ba.

Liczba masowa A izotopu neodymu:

Rodzaj przemian promieniotwórczych:

Test diagnostyczny CKE Grudzień 2022, Poziom rozszerzony (Formuła 2023)Zadanie 29. (4 pkt)

Prawo stałości składu, ustalanie wzoru Estry i tłuszcze Napisz równanie reakcji Narysuj/zapisz wzór

Do parametrów charakteryzujących tłuszcze należy tzw. liczba jodowa. Jest ona miarą nienasycenia tłuszczu i odpowiada liczbie gramów jodu, który może przereagować z próbką tłuszczu o masie 100 g.

Tłuszcze poddaje się w przemyśle m.in. transestryfikacji, która polega na wymianie reszt kwasowych na inne lub na podstawieniu innego alkoholu w miejscu glicerolu.

29.1. (0–2)

Napisz równanie reakcji kwasu oleinowego z jodem oraz równanie transestryfikacji trioleinianu glicerolu z metanolem. Zastosuj wzory półstrukturalne (grupowe) reagentów organicznych.

29.2. (0–2)

Pewien trigliceryd, którego cząsteczki nie są chiralne, ma liczbę jodową ok. 30. Ten związek poddano transestryfikacji z metanolem i stwierdzono, że w produktach znajdują się tylko dwa estry: oleinian metylu i palmitynian metylu.

Wykonaj odpowiednie obliczenia i uzupełnij poniższy wzór, tak aby przedstawiał trigliceryd, który poddano opisanym reakcjom.
Przyjmij wartości mas molowych:

Mglicerolu = 92 g∙mol–1,
Mkwasu oleinowego = 282 g∙mol–1,
Mkwasu palmitynowego = 256 g∙mol–1.

Wzór triglicerydu:

Test diagnostyczny CKE Grudzień 2022, Poziom rozszerzony (Formuła 2023)Zadanie 21. (2 pkt)

Masa atomowa, cząsteczkowa i molowa Podaj i uzasadnij/wyjaśnij

Jedną z metod analizy instrumentalnej jest spektrometria mas. Podczas takiej analizy badana próbka (w fazie gazowej) jest poddawana jonizacji. Cząsteczki tracą elektrony i stają się kationami oraz ulegają fragmentacji, w wyniku której powstają mniejsze kationy. Następnie wiązka kationów przechodzi przez pole magnetyczne, w którym tor jej ruchu ulega zakrzywieniu. Wielkość zakrzywienia zależy od stosunku masy do ładunku i dla jednododatnich kationów jest odwrotnie proporcjonalna do ich masy. W ten sposób kationy o różnych masach zostają rozdzielone i odpowiadają im oddzielne piki w otrzymanym widmie masowym. Wysokość tych pików (intensywność) jest proporcjonalna do zawartości odpowiednich kationów w próbce. Cząsteczkom, które uległy jonizacji, ale nie uległy fragmentacji, odpowiadają tzw. piki molekularne o największej masie. Poniżej przedstawiono uproszczony schemat działania spektrometru mas.

Niżej przedstawiono fragment widma masowego bromu, na którym są widoczne piki molekularne pochodzące od kationów Br+2 o różnym składzie izotopowym. Intensywność sygnałów (wysokość pików) jest mierzona względem najwyższego piku molekularnego.

Na poniższym fragmencie widma masowego chlorobenzenu pokazano trzy piki, oznaczone numerami 1 (pik fragmentacyjny) oraz 2, 3 (piki molekularne).

Wpisz do tabeli wzory sumaryczne kationów odpowiadających kolejnym pikom. Jeśli w jonie występuje chlor, podaj jego liczbę masową. Wyjaśnij, dlaczego dwa piki molekularne znacznie różnią się pod względem wysokości.

Numer piku Wzór kationu
1
2
3

Wyjaśnienie:

Test diagnostyczny CKE Grudzień 2022, Poziom rozszerzony (Formuła 2023)Zadanie 8. (2 pkt)

Stechiometryczny stosunek reagentów Oblicz

Przygotowano dwa zestawy laboratoryjne umożliwiające pomiar objętości gazu wydzielonego w reakcji metali z kwasem solnym. W kolbie jednego zestawu umieszczono próbkę mieszaniny wiórków magnezu i miedzi w stosunku molowym 8 : 3, a w kolbie drugiego zestawu – próbkę o takiej samej masie, ale złożoną z wiórków glinu i srebra. Do kolb wprowadzono nadmiar kwasu solnego i stwierdzono, że objętość wydzielonego gazu była taka sama w obu zestawach.

Oblicz zawartość glinu w % masowych w mieszaninie wiórków użytej w doświadczeniu. Przyjmij wartości mas molowych:

MMg = 24 g∙mol–1,   MCu = 64 g∙mol–1,   MAl = 27 g∙mol–1,   MAg = 108 g∙mol–1.

Zawartość glinu w % masowych:

Test diagnostyczny CKE Grudzień 2022, Poziom rozszerzony (Formuła 2023)Zadanie 3. (5 pkt)

Izotopy i promieniotwórczość Oblicz

Cząstki α emitowane przez jądra wielu promieniotwórczych izotopów ulegają zobojętnieniu elektronami z otoczenia, co prowadzi do powstania gazowego helu. Jeżeli rozpad promieniotwórczy zachodzi w układzie zamkniętym, ilość helu otrzymanego w taki sposób jest proporcjonalna do liczby wyemitowanych cząstek α. Ta zależność stała się podstawą jednej z pierwszych metod wyznaczania stałej Avogadra.

Zmierzono aktywność radu 226Ra i stwierdzono, że 1,0 g tego izotopu w ciągu sekundy emituje 3,4 ⸱ 1010 cząstek α, co powoduje jego przemianę w radon 222Rn. Następnie z izotopu 222Rn, w wyniku ciągu kilku szybkich przemian promieniotwórczych α i β, powstaje ołów 210Pb. Dalszy rozpad tego nuklidu nie wpływa na przebieg eksperymentu.

Próbkę zawierającą 200 mg izotopu 226Ra zamknięto na 80 dni (6 912 000 s) w zbiorniku i po tym czasie stwierdzono, że powstało 7,0 mm3 helu (w przeliczeniu na warunki normalne). Można przyjąć, że aktywność radu 226Ra była stała w czasie trwania eksperymentu.

3.1. (0–4)

Oblicz stałą Avogadra na podstawie danych z opisanego eksperymentu. Przedstaw tok rozumowania.

Stała Avogadra:

3.2. (0–1)

Oblicz, ile cząstek β jest emitowanych w ciągu przemian jądra 22688Ra w jądro 21082Pb.

Liczba cząstek β:

Matura Maj 2020, Poziom rozszerzony (Formuła 2007)Zadanie 24. (2 pkt)

Prawo stałości składu, ustalanie wzoru Narysuj/zapisz wzór

Pewien nienasycony alkohol monowodorotlenowy o wzorze ogólnym CnH2n–1OH jest pochodną alkenu o prostym (nierozgałęzionym) łańcuchu węglowym. Masa atomów węgla stanowi 62,07% masy cząsteczki tego alkoholu. W odróżnieniu od nietrwałych enoli, w których cząsteczkach grupa –OH jest przyłączona do atomu węgla uczestniczącego w wiązaniu podwójnym, opisany alkohol jest trwały.

Ustal wzór sumaryczny nienasyconego alkoholu monohydroksylowego opisanego w informacji. Napisz wzór półstrukturalny (grupowy) tego alkoholu.

Wzór sumaryczny:

Wzór półstrukturalny:

Matura Maj 2020, Poziom rozszerzony (Formuła 2007)Zadanie 16. (3 pkt)

Stechiometryczny stosunek reagentów Bilans elektronowy Napisz równanie reakcji

Srebro występuje w przyrodzie jako srebro rodzime, a także jako składnik minerałów, takich jak argentyt Ag2S czy chlorargiryt AgCl. Proces wydobywania srebra z urobku górniczego polega na przeprowadzeniu srebra w dobrze rozpuszczalny w wodzie kompleksowy związek cyjankowy, w którym srebro wchodzi w skład anionu o wzorze [Ag(CN)2]. W tym celu rozdrobniony urobek górniczy poddaje się działaniu cyjanku sodu NaCN w obecności powietrza. Poniższe schematy są ilustracją reakcji zachodzących podczas opisanego procesu:

  reakcja I:
  reakcja II:
  reakcja III:
Ag + NaCN + 2H2O + O2 Na[Ag(CN)2]
Ag2S + NaCN (aq) Na[Ag(CN)2]
AgCl + NaCN (aq) Na[Ag(CN)2]
Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2010.

Reakcja I jest reakcją utleniania i redukcji, która zachodzi zgodnie ze schematem:

Ag + CN + H2O + O2 → [Ag(CN)2] + OH

16.1. (2 pkt)

Napisz w formie jonowej z uwzględnieniem liczby oddawanych lub pobieranych elektronów (zapis jonowo-elektronowy) równania procesów redukcji i utleniania zachodzących podczas opisanej reakcji. Uwzględnij środowisko obojętne, w którym reakcja przebiega.

Równanie procesu redukcji:

Równanie procesu utleniania:

16.2. (1 pkt)

Uzupełnij współczynniki stechiometryczne w poniższym schemacie opisanej reakcji. Ag + CN + H2O + O2 [Ag(CN)2] OH

Matura Maj 2020, Poziom rozszerzony (Formuła 2007)Zadanie 11. (1 pkt)

Stechiometryczny stosunek reagentów Podaj/wymień

Siarczan(VI) wapnia–woda (2/1) jest stosowany w zaprawie budowlanej, ponieważ ma zdolność wiązania wody. W wyniku tego procesu powstaje siarczan(VI) wapnia–woda (1/2).

Uzupełnij poniższy schemat, tak aby otrzymać równanie opisanej reakcji, oraz wybierz spośród podanych i podkreśl nazwę procesu, którego podstawą jest ta reakcja.

Równanie reakcji:

(CaSO4)2 ⋅ H2O + H2O → (CaSO4 ⋅ 2H2O)

Nazwa procesu:

gaszenie wapna
twardnienie zaprawy gipsowej
twardnienie zaprawy wapiennej

Matura Maj 2020, Poziom rozszerzony (Formuła 2007)Zadanie 8. (1 pkt)

Stechiometryczny stosunek reagentów Napisz równanie reakcji

W środowisku alkalicznym jod utlenia ilościowo metanal do kwasu metanowego. Czynnikiem utleniającym jest anion jodanowy(I), który powstaje w reakcji jodu cząsteczkowego z anionami hydroksylowymi. Przebieg opisanych przemian można zilustrować następującymi równaniami:

reakcja 1.
reakcja 2.
I2 + 2OH →IO + I + H2O
HCHO + IO + OH →HCOO + I + H2O
Na podstawie: J. Minczewski, Z. Marczenko, Chemia analityczna 2. Chemiczne metody analizy ilościowej, Warszawa 1998.

Napisz w formie jonowej skróconej sumaryczne równanie opisanego utleniania metanalu jodem w środowisku alkalicznym i określ stosunek masowy, w jakim metanal reaguje z jodem.

Równanie reakcji:

Stosunek masowy metanalu i jodu 2 mHCHO : mI2 =

Matura Maj 2020, Poziom rozszerzony (Formuła 2007)Zadanie 3. (2 pkt)

Izotopy i promieniotwórczość Zamknięte (np. testowe, prawda/fałsz) Oblicz

Najtrwalszym izotopem neptunu jest izotop o liczbie masowej równej 237 i okresie półtrwania τ = 2,2⋅106 lat. Otrzymuje się go przez napromieniowanie izotopu uranu o liczbie masowej 238 neutronami o dużej energii kinetycznej. Ta przemiana zachodzi zgodnie z poniższym schematem.

23892U + 10n → 23792U + a10n

W jej wyniku powstaje nietrwały izotop uranu o liczbie masowej A = 237. Jądro 23792U ulega rozpadowi – powstaje jądro 23793Np.

Na podstawie: A. Czerwiński, Energia jądrowa i promieniotwórczość, Warszawa 1998.

3.1. (1 pkt)

Uzupełnij poniższe zdania, tak aby powstała informacja prawdziwa: wybierz i podkreśl wartość współczynnika a (liczbę neutronów) w równaniu przemiany izotopu uranu o liczbie masowej 238 oraz typ przemiany, której ulega izotop uranu o liczbie masowej 237.

Współczynnik a w równaniu przemiany izotopu uranu o liczbie masowej 238 jest równy (1 / 2 / 3). Izotop uranu o liczbie masowej 237 ulega przemianie (α / β / γ).

3.2. (1 pkt)

Oblicz, po ilu latach z próbki izotopu neptunu 23793Np o masie równej m pozostanie próbka zawierająca 0,25m tego izotopu.

Arkusz pokazowy CKE Marzec 2022, Poziom rozszerzony (Formuła 2023)Zadanie 18. (2 pkt)

Masa atomowa, cząsteczkowa i molowa Właściwości roztworów i mieszanin Podaj/wymień Oblicz

Kolorymetria jest metodą analizy chemicznej stosowaną do oznaczania małych stężeń substancji, których roztwory są barwne, na podstawie porównania intensywności barwy roztworu badanego i roztworu wzorcowego o znanym stężeniu. Intensywność zabarwienia roztworu zależy od absorpcji promieniowania elektromagnetycznego o określonej długości fali z zakresu światła widzialnego. Miarą absorpcji jest wielkość zwana absorbancją – oznaczana literą A. Absorbancja, jaką wykazuje dany roztwór, jest wprost proporcjonalna do stężenia barwnego składnika tego roztworu.

Kolorymetryczne oznaczenie bardzo małych ilości miedzi(II) można wykonać, jeżeli zmierzy się absorbancję roztworu kompleksu miedzi(II) z dietyloditiokarbaminianem, w skrócie oznaczanego wzorem Cu(DDTK)2. Ten związek słabo rozpuszcza się w wodzie, ale dobrze – w rozpuszczalnikach organicznych. W drugiej z tych sytuacji powstaje roztwór o barwie żółtobrunatnej.

Aby wyznaczyć masę miedzi w próbce badanego wodnego roztworu zawierającego jony miedzi(II), do tego roztworu dodano roztwór dietyloditiokarbaminianu sodu NaDDTK. Następnie otrzymaną mieszaninę wytrząsano z rozpuszczalnikiem organicznym, co spowodowało, że obecny w wodzie Cu(DDTK)2 przeszedł ilościowo do fazy organicznej. Wszystkie porcje roztworu Cu(DDTK)2 w rozpuszczalniku organicznym połączono i uzupełniono tym rozpuszczalnikiem do objętości 25 cm3. Metodą kolorymetryczną wyznaczono stężenie miedzi(II) w badanym roztworze, które było równe 3,50·10–5 mol·dm–3.

Na podstawie: https://encyklopedia.pwn.pl/haslo/analiza-kolorymetryczna;3924039.html [dostęp 06.10.2017], B. Jankiewicz, B. Ptaszyński, A. Turek, Polish Journal of Environmental Studies, Vol. 8, Nr 1 (1999).

18.1. (0–1)

Oblicz, ile mikrogramów miedzi w postaci miedzi(II) zawierała próbka badanego wodnego roztworu (1 μg = 10–6 g). Przyjmij masę molową miedzi równą 63,55 g∙mol–1.

18.2. (0–1)

Napisz nazwę metody, za pomocą której wyodrębniono kompleks miedzi(II) z roztworu wodnego.

Arkusz pokazowy CKE Marzec 2022, Poziom rozszerzony (Formuła 2023)Zadanie 9. (2 pkt)

Stechiometria - ogólne Oblicz

W pewnej wodzie mineralnej znajdują się jony: Ca2+, Mg2+ oraz HCO3. Ich zawartość przedstawiono w poniższej tabeli.

Składnik mineralny Zawartość, mg ∙ dm–3
Ca2+ 457
Mg2+ 50
HCO3 1836

Podczas gotowania 1000 cm3 tej wody mineralnej zaobserwowano powstanie białego osadu. W opisanych warunkach przebiegły reakcje opisane równaniami:

Ca2+ + 2HCO3 → CaCO3 + CO2 + H2O
Mg2+ + 2HCO3 → MgCO3 + CO2 + H2O

Oblicz, jaki procent masy wydzielonego osadu stanowi masa węglanu magnezu. Przyjmij, że obie reakcje zachodzą z wydajnością równą 100%, a powstały osad składa się wyłącznie z węglanu wapnia i węglanu magnezu.

Arkusz pokazowy CKE Marzec 2022, Poziom rozszerzony (Formuła 2023)Zadanie 5. (1 pkt)

Izotopy i promieniotwórczość Uzupełnij/narysuj wykres, schemat lub tabelę

Tenes – pierwiastek chemiczny o liczbie atomowej Z = 117 – otrzymano w reakcji jądrowej między 48Ca i 249Bk. W tym procesie powstały dwa izotopy tenesu, przy czym reakcji tworzenia jądra jednego z tych izotopów towarzyszyła emisja 3 neutronów. Ten izotop ulegał dalszym przemianom: w wyniku kilku kolejnych przemian α otrzymano dubn – 270Db.

Napisz równanie reakcji otrzymywania opisanego izotopu tenesu – uzupełnij wszystkie pola w poniższym schemacie. Napisz, w wyniku ilu przemian 𝛂 ten izotop tenesu przekształcił się w 270Db.

Otrzymywanie izotopu tenesu:

Liczba przemian α:

Matura Czerwiec 2022, Poziom rozszerzony (Formuła 2015)Zadanie 23. (3 pkt)

Prawo stałości składu, ustalanie wzoru Oblicz

Pewien związek organiczny jest pochodną alkanu. W cząsteczce tego związku są jednakowe grupy funkcyjne. Ta substancja reaguje ze świeżo strąconym wodorotlenkiem miedzi(II). Cząsteczka tego związku ma masę równą 1,53 ∙ 10–22 g.

W wyniku całkowitego spalenia próbki tego związku o masie 1,38 g jako jedyne produkty otrzymano 1,98 g CO2 i 1,08 g H2O.

Na podstawie obliczeń ustal wzór półstrukturalny (grupowy) opisanego związku organicznego. Następnie uzupełnij poniższe zdanie – wybierz i zaznacz jedną odpowiedź spośród podanych w nawiasie.

Wzór półstrukturalny (grupowy):

Po dodaniu do bezbarwnego wodnego roztworu opisanego związku zawiesiny świeżo strąconego wodorotlenku miedzi(II) osad tego wodorotlenku roztwarza się i powstaje (szafirowy / fioletowy) roztwór.

Matura Czerwiec 2022, Poziom rozszerzony (Formuła 2015)Zadanie 18. (1 pkt)

Prawo stałości składu, ustalanie wzoru Oblicz

Tiosiarczan(VI) sodu występuje w postaci hydratu o wzorze Na2S2O3 ∙ 𝑥H2O. Podczas ogrzewania rozpuszcza się on w wodzie krystalizacyjnej i tworzy roztwór o stężeniu 63,71% masowych. Pod wpływem kwasu roztwór tiosiarczanu(VI) sodu przyjmuje mleczne zabarwienie wskutek pojawienia się koloidalnej siarki, a ponadto wydziela się tlenek siarki(IV).

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.

Oblicz, ile moli wody przypada na jeden mol Na2S2O3 w soli o wzorze Na2S2O3 ∙ 𝒙H2O.

Matura Czerwiec 2022, Poziom rozszerzony (Formuła 2015)Zadanie 4. (2 pkt)

Stechiometryczny stosunek reagentów Oblicz

Tlenek azotu(IV) NO2 można zredukować katalitycznie za pomocą amoniaku. Przebieg tej reakcji opisano równaniem:

6NO2 + 8NH3 katalizator, 𝑇 7N2 + 12H2O

Na podstawie: K. Schmidt-Szałowski, M. Szafran, E. Bobryk, J. Sentek, Technologia chemiczna. Przemysł nieorganiczny, Warszawa 2013.

W 5,0 m3 powietrza znajdowało się 18 g tlenku azotu(IV) NO2. Do tego powietrza wprowadzono 8,0 g amoniaku i przeprowadzono katalityczną redukcję zgodnie z powyższym równaniem. Ta reakcja zaszła z wydajnością równą 80%. Tlenek azotu(IV) był jedynym składnikiem powietrza reagującym z amoniakiem.

Oblicz, ile dm3 azotu w przeliczeniu na warunki normalne powstało w wyniku opisanej redukcji NO2. Następnie uzupełnij zdanie – napisz nazwę lub wzór substancji, której w opisanym procesie użyto w nadmiarze.

W opisanym procesie w nadmiarze użyto .

Strony