Elektrony w atomach, orbitale

Oto lista zadań maturalnych z danego działu chemii. Aby skorzystać z dodatkowych opcji lub wybrać zadania z pozostałych działów kliknij poniżej.

Przejdź do wyszukiwarki zadań

 

Matura Lipiec 2020, Poziom rozszerzony (Formuła 2015)Zadanie 6. (2 pkt)

Elektrony w atomach, orbitale Układ okresowy pierwiastków Zamknięte (np. testowe, prawda/fałsz) Podaj i uzasadnij/wyjaśnij

W poniższej tabeli zestawiono wybrane właściwości litowców i berylowców.

Właściwość Nazwa pierwiastka
lit beryl sód magnez potas wapń
promień kationu*,
pm
76 45 102 72 138 100
promień atomu, pm 134 125 154 145 196 174
pierwsza energia
jonizacji, kJ∙mol−1
520 899 496 738 419 590
temperatura
topnienia, K
454 1560 371 923 336 1115

* W tabeli podano promień kationów M+ – dla litowców oraz M2+ – dla berylowców.

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.

6.1. (0–1)

Uzupełnij poniższe zdania. Wybierz i zaznacz jedną odpowiedź spośród podanych w każdym nawiasie.

  1. Dla pierwiastków danego okresu stosunek promienia jonowego do promienia atomowego litowca jest (większy / mniejszy) niż stosunek promienia jonowego do promienia atomowego berylowca.
  2. W każdym okresie temperatury topnienia berylowców są (wyższe / niższe) niż temperatury topnienia litowców, czego przyczyną jest silniejsze wiązanie metaliczne występujące między atomami (berylowców / litowców).

6.2. (0–1)

Pierwsza energia jonizacji to minimalna energia potrzebna do oderwania jednego elektronu od atomu pierwiastka w stanie gazowym, czego skutkiem jest powstanie kationu. Molowa energia jonizacji – wyrażona w kJ∙mol−1 – jest równa energii jonizacji 1 mola atomów.

Sformułuj zależność między wartością pierwszej energii jonizacji a liczbą atomową berylowca. Wyjaśnij, dlaczego pierwsza energia jonizacji litowca jest niższa niż pierwsza energia jonizacji berylowca leżącego w tym samym okresie układu okresowego.

Zależność między pierwszą energią jonizacji a liczbą atomową berylowca:

Pierwsza energia jonizacji litowca jest niższa niż pierwsza energia jonizacji berylowca, leżącego w tym samym okresie układu okresowego pierwiastków, ponieważ

Matura Lipiec 2020, Poziom rozszerzony (Formuła 2015)Zadanie 2. (2 pkt)

Elektrony w atomach, orbitale Uzupełnij/narysuj wykres, schemat lub tabelę

Atomy pierwiastków chemicznych mogą występować w różnych stanach energetycznych. Stan o najniższej energii nazywamy podstawowym, a stany o energiach wyższych – wzbudzonymi. Poniższe schematy I i II przedstawiają konfigurację elektronową dla orbitali walencyjnych atomu pewnego pierwiastka chemicznego X w różnych stanach energetycznych.

Uzupełnij poniższą tabelę – wpisz symbol pierwiastka X, numer grupy oraz symbol bloku konfiguracyjnego, do którego należy ten pierwiastek. Napisz, który schemat konfiguracji elektronowej (I albo II) opisuje stan podstawowy atomu pierwiastka X.

Symbol pierwiastka Numer grupy Symbol bloku

Stan podstawowy atomu pierwiastka X opisuje schemat numer

Matura Czerwiec 2021, Poziom rozszerzony (Formuła 2015)Zadanie 3. (2 pkt)

Elektrony w atomach, orbitale Uzupełnij/narysuj wykres, schemat lub tabelę

Zidentyfikuj pierwiastki chemiczne na podstawie podanych niżej opisów konfiguracji atomów lub jonów w stanie podstawowym. Wpisz ich symbole do tabeli.

Opis konfiguracji Symbol pierwiastka
Konfiguracja elektronowa dwudodatniego jonu tego pierwiastka jest taka sama jak konfiguracja elektronowa atomu argonu.
Ten pierwiastek należy do bloku p. Elektrony w atomie tego pierwiastka (w stanie podstawowym) rozmieszczone są na czterech powłokach elektronowych, a na podpowłoce p powłoki walencyjnej liczba elektronów sparowanych jest równa liczbie elektronów niesparowanych.
Elektrony w atomie tego pierwiastka są rozmieszczone na czterech powłokach elektronowych. W stanie podstawowym liczba elektronów na podpowłoce d jest taka sama jak liczba elektronów na powłoce o najwyższej energii.

Matura Czerwiec 2021, Poziom rozszerzony (Formuła 2015)Zadanie 2. (2 pkt)

Elektrony w atomach, orbitale Podaj/wymień

Chlor występuje w przyrodzie w postaci mieszaniny dwóch izotopów. W jądrze izotopu o mniejszej liczbie masowej znajduje się 18 neutronów. Zawartość procentowa tego izotopu w występującym w przyrodzie pierwiastku wynosi 75,78%. Średnia masa atomowa chloru jest równa 35,453 u, a jeden z izotopów tego pierwiastka ma masę równą 34,969 u.

Na podstawie: J. Sawicka i inni, Tablice chemiczne, Gdańsk 2015.

Chlor występuje w związkach chemicznych na wielu różnych stopniach utlenienia.

Uzupełnij poniższe zdania. Wpisz informacje dotyczące struktury elektronowej atomu chloru i jego stopni utlenienia oraz nazwę kwasu tlenowego chloru.

  1. Pełna podpowłokowa konfiguracja elektronowa atomu chloru w stanie podstawowym ma postać . W jego rdzeniu atomowym (na wewnętrznych powłokach elektronowych) znajduje się elektronów.
    Chlor należy do bloku konfiguracyjnego .
  2. Minimalny stopień utlenienia, jaki przyjmuje chlor w związkach chemicznych, jest równy . Kwas tlenowy, w którym chlor ma najwyższy możliwy stopień utlenienia, ma nazwę .

Biomedica 2022, Poziom rozszerzony (Formuła 2015)Zadanie 1. (2 pkt)

Elektrony w atomach, orbitale Podaj/wymień

Pierwiastek X należy do metali ziem alkalicznych. Pierwiastek ten jest składnikiem minerału o nazwie dolomit. Dodatkowo wiadomo, że jon pierwiastka X ma największą zdolność do hydratacji spośród berylowców. Liczba neutronów w atomie tego pierwiastka jest równa dwukrotnej ilości elektronów walencyjnych atomu siarki.

1.1. (0-1)

Ustal i zapisz konfigurację elektronową dla jonu X2+.

1.2. (0-1)

Zapisz konfigurację elektronową drugiego atomu wchodzącego w skład dolomitu (dotyczy metalu ziem alkalicznych).

To zadanie pochodzi ze zbioru matura 2022 wydawnictwa Biomedica
Kup pełny zbiór zadań

Informator CKE, Poziom rozszerzony (Formuła 2023)Zadanie 1. (4 pkt)

Układ okresowy pierwiastków Elektrony w atomach, orbitale Uzupełnij/narysuj wykres, schemat lub tabelę Podaj/wymień

O dwóch pierwiastkach umownie oznaczonych literami X i Z wiadomo, że:

  • konfigurację elektronową atomu pierwiastka X w jednym ze stanów wzbudzonych przedstawia zapis:
  • łączna liczba elektronów na ostatniej powłoce i na podpowłoce 3d atomu w stanie podstawowym pierwiastka Z jest dwa razy większa od liczby elektronów walencyjnych atomu pierwiastka X.

1.1. (0–2)

Uzupełnij poniższą tabelę. Wpisz symbole pierwiastków X i Z, numer grupy układu okresowego oraz symbol bloku konfiguracyjnego, do którego należy każdy z pierwiastków.

Symbol pierwiastka Numer grupy Symbol bloku
pierwiastek X
pierwiastek Z

1.2. (0–1)

Wpisz do tabeli wartości dwóch liczb kwantowych: głównej i pobocznej, opisujące stan kwantowo-mechaniczny jednego z niesparowanych elektronów o najwyższej energii atomu pierwiastka X w przedstawionym stanie wzbudzonym.

Liczby kwantowe główna liczba kwantowa, n poboczna liczba kwantowa, l
Wartość liczb kwantowych

1.3. (0–1)

Przedstaw pełną konfigurację elektronową jonu Z2+ w stanie podstawowym. Zastosuj zapis konfiguracji elektronowej z uwzględnieniem podpowłok.

Matura Maj 2021, Poziom rozszerzony (Formuła 2015)Zadanie 2. (1 pkt)

Elektrony w atomach, orbitale Uzupełnij/narysuj wykres, schemat lub tabelę

Atomy fluorowców wykazują wyraźną tendencję do przyjęcia dodatkowego elektronu i przejścia w jon X– lub też – gdy różnica elektroujemności fluorowca i łączącego się z nim pierwiastka jest mała – do utworzenia wiązania kowalencyjnego. W szczególnych warunkach może nastąpić oderwanie elektronu od obojętnego atomu fluorowca i utworzenie jonu X+.

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.

Uzupełnij poniższy schemat tak, aby przedstawiał on graficzny zapis konfiguracji elektronowej kationu bromoniowego Br+ (stan podstawowy). W tym zapisie uwzględnij numery powłok i symbole podpowłok.

Matura Maj 2021, Poziom rozszerzony (Formuła 2015)Zadanie 1. (2 pkt)

Elektrony w atomach, orbitale Uzupełnij/narysuj wykres, schemat lub tabelę

Dwa pierwiastki, oznaczone numerami 1. i 2., należą do czwartego okresu układu okresowego. Liczba atomowa pierwiastka 1. jest mniejsza od liczby atomowej pierwiastka 2. Atomy (w stanie podstawowym) tych pierwiastków mają 4 elektrony, które mogą uczestniczyć w tworzeniu wiązań chemicznych.

Uzupełnij tabelę. Napisz nazwy pierwiastków 1. i 2. oraz określ, czy w atomach (w stanie podstawowym) tych pierwiastków występują niesparowane elektrony – podaj liczbę elektronów niesparowanych i napisz symbol podpowłoki, do której one należą, albo zaznacz, że nie ma takich elektronów.

Nazwa Elektrony niesparowane
liczba symbol podpowłoki
Pierwiastek 1.
Pierwiastek 2.

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 96. (1 pkt)

Elektrony w atomach, orbitale Zamknięte (np. testowe, prawda/fałsz)

W tabeli zestawiono właściwości fizyczne borowców.

Nazwa pierwiastka Ogólna konfiguracja elektronów walencyjnych w stanie podstawowym Rozpowszechnienie w skorupie ziemskiej,
%
Gęstość,
g · cm–3
Temperatura topnienia,
K
bor ns2np1 1,0 ⋅ 10−4 2,34 2570,00
glin 8,23 2,70 933,47
gal 1,9 ⋅ 10−4 5,91 302,91
ind 4,5 ⋅ 10−5 7,31 429,75
tal 8,5 ⋅ 10−5 11,85 577,00

Większość pierwiastków 13. grupy układu okresowego stanowi mieszaninę 2 trwałych izotopów, np. tal występuje w przyrodzie w postaci 2 izotopów o masach równych 202,97 u i 204,97 u. Bor jest pierwiastkiem niemetalicznym, podczas gdy pozostałe pierwiastki tej grupy są metalami. Glin i tal mają typowe sieci metaliczne o najgęstszym ułożeniu atomów, gal i ind tworzą sieci rzadko spotykane u metali. Te różnice w strukturze powodują różnice w twardości i temperaturach topnienia. Glin jest kowalny i ciągliwy; gal jest twardy i kruchy, natomiast ind należy do najbardziej miękkich pierwiastków – daje się kroić nożem, podobnie jak tal. Elementarny bor wykazuje bardzo wysoką temperaturę topnienia, co jest spowodowane występowaniem w jego sieci przestrzennej silnych wiązań kowalencyjnych. Bor można otrzymać w reakcji redukcji tlenku boru metalicznym magnezem użytym w nadmiarze. Otrzymany tą metodą preparat zawiera 98% boru, natomiast 2% stanowią zanieczyszczenia takie, jak tlenek magnezu i nadmiar użytego do reakcji magnezu. Czysty krystaliczny bor można otrzymać między innymi przez rozkład termiczny jodku boru. Krystaliczny bor ma barwę czarnoszarą, wykazuje dużą twardość i jest złym przewodnikiem elektryczności; charakteryzuje się małą aktywnością chemiczną – nie działa na niego wrzący kwas solny ani kwas fluorowodorowy.

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004, s. 760–793; J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002, s. 202.

Uzupełnij poniższe zdania. Wpisz fragment konfiguracji elektronowej atomu talu w stanie podstawowym, który odnosi się do elektronów walencyjnych, a także wybierz i podkreśl symbol typu podpowłoki oraz wartość głównej i pobocznej liczby kwantowej spośród podanych w nawiasach.

Fragment konfiguracji elektronowej atomu talu w stanie podstawowym, który odnosi się do elektronów walencyjnych można zapisać w postaci .
Jedyny niesparowany elektron atomu talu w stanie podstawowym należy do podpowłoki typu (s/p/d). Główna liczba kwantowa n opisująca stan tego elektronu wynosi (4/5/6), a poboczna liczba kwantowa l jest równa (0/1/2/3).

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 95. (2 pkt)

Elektrony w atomach, orbitale Układ okresowy pierwiastków Podaj/wymień

W tabeli zestawiono właściwości fizyczne borowców.

Nazwa pierwiastka Ogólna konfiguracja elektronów walencyjnych w stanie podstawowym Rozpowszechnienie w skorupie ziemskiej,
%
Gęstość,
g · cm–3
Temperatura topnienia,
K
bor ns2np1 1,0 ⋅ 10−4 2,34 2570,00
glin 8,23 2,70 933,47
gal 1,9 ⋅ 10−4 5,91 302,91
ind 4,5 ⋅ 10−5 7,31 429,75
tal 8,5 ⋅ 10−5 11,85 577,00

Większość pierwiastków 13. grupy układu okresowego stanowi mieszaninę 2 trwałych izotopów, np. tal występuje w przyrodzie w postaci 2 izotopów o masach równych 202,97 u i 204,97 u. Bor jest pierwiastkiem niemetalicznym, podczas gdy pozostałe pierwiastki tej grupy są metalami. Glin i tal mają typowe sieci metaliczne o najgęstszym ułożeniu atomów, gal i ind tworzą sieci rzadko spotykane u metali. Te różnice w strukturze powodują różnice w twardości i temperaturach topnienia. Glin jest kowalny i ciągliwy; gal jest twardy i kruchy, natomiast ind należy do najbardziej miękkich pierwiastków – daje się kroić nożem, podobnie jak tal. Elementarny bor wykazuje bardzo wysoką temperaturę topnienia, co jest spowodowane występowaniem w jego sieci przestrzennej silnych wiązań kowalencyjnych. Bor można otrzymać w reakcji redukcji tlenku boru metalicznym magnezem użytym w nadmiarze. Otrzymany tą metodą preparat zawiera 98% boru, natomiast 2% stanowią zanieczyszczenia takie, jak tlenek magnezu i nadmiar użytego do reakcji magnezu. Czysty krystaliczny bor można otrzymać między innymi przez rozkład termiczny jodku boru. Krystaliczny bor ma barwę czarnoszarą, wykazuje dużą twardość i jest złym przewodnikiem elektryczności; charakteryzuje się małą aktywnością chemiczną – nie działa na niego wrzący kwas solny ani kwas fluorowodorowy.

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004, s. 760–793; J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002, s. 202.

Napisz, stosując zapis pełny (uwzględniający rozmieszczenie elektronów na podpowłokach), konfigurację elektronową atomu galu w stanie podstawowym oraz określ przynależność tego pierwiastka do bloku energetycznego (konfiguracyjnego).

Matura Marzec 2021, Poziom rozszerzony (Formuła 2015)Zadanie 3. (1 pkt)

Elektrony w atomach, orbitale Zamknięte (np. testowe, prawda/fałsz)

Pierwsza energia jonizacji (Ej1) to minimalna energia potrzebna do oderwania pierwszego elektronu od obojętnego atomu. Każda następna energia jonizacji (Ej2, Ej3 itd.) to energia potrzebna do oderwania kolejnego elektronu od coraz bardziej dodatnio naładowanej drobiny. Wartości energii jonizacji zmieniają się okresowo w miarę wzrostu liczby atomowej.

W tabeli podano wartość pierwszej energii jonizacji dla atomu wodoru i wartości kilku wybranych energii jonizacji dla atomów kolejnych pierwiastków pierwszej grupy układu okresowego.

Nazwa pierwiastka Energia jonizacji, 106 · J · mol−1
pierwsza druga trzecia czwarta piąta
wodór 1,31
lit 0,52 7,30 11,81
sód 0,49 4,56 6,91 9,54 13,35
potas 0,42 3,05 4,41 5,88 7,98
rubid 0,40 2,63 3,90 5,08 6,85

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.

Uzupełnij poniższe zdania. Wybierz i podkreśl jedną odpowiedź spośród podanych w każdym nawiasie.

Pierwsza energia jonizacji litowca jest (mniejsza / większa) niż druga energia jonizacji, ponieważ:

  • (łatwiej / trudniej) oderwać elektron od jonu naładowanego dodatnio niż od obojętnego atomu

oraz

  • przyciąganie przez jądro elektronu z przedostatniej powłoki jest (silniejsze / słabsze) niż przyciąganie elektronu z powłoki ostatniej.

Matura Marzec 2021, Poziom rozszerzony (Formuła 2015)Zadanie 2. (1 pkt)

Elektrony w atomach, orbitale Podaj i uzasadnij/wyjaśnij

Pierwsza energia jonizacji (Ej1) to minimalna energia potrzebna do oderwania pierwszego elektronu od obojętnego atomu. Każda następna energia jonizacji (Ej2, Ej3 itd.) to energia potrzebna do oderwania kolejnego elektronu od coraz bardziej dodatnio naładowanej drobiny. Wartości energii jonizacji zmieniają się okresowo w miarę wzrostu liczby atomowej.

W tabeli podano wartość pierwszej energii jonizacji dla atomu wodoru i wartości kilku wybranych energii jonizacji dla atomów kolejnych pierwiastków pierwszej grupy układu okresowego.

Nazwa pierwiastka Energia jonizacji, 106 · J · mol−1
pierwsza druga trzecia czwarta piąta
wodór 1,31
lit 0,52 7,30 11,81
sód 0,49 4,56 6,91 9,54 13,35
potas 0,42 3,05 4,41 5,88 7,98
rubid 0,40 2,63 3,90 5,08 6,85

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.

Wyjaśnij, dlaczego wartość pierwszej energii jonizacji atomu wodoru jest dużo większa niż wartość pierwszej energii jonizacji atomów kolejnych pierwiastków pierwszej grupy.

Matura Marzec 2021, Poziom rozszerzony (Formuła 2015)Zadanie 1. (2 pkt)

Układ okresowy pierwiastków Elektrony w atomach, orbitale Uzupełnij/narysuj wykres, schemat lub tabelę

Konfigurację elektronową dwudodatniego kationu pierwiastka X przedstawia zapis: [Ar]3d10.

1.1. (0–1)

Uzupełnij poniższą tabelę. Wpisz symbol chemiczny pierwiastka X, numer grupy oraz symbol bloku konfiguracyjnego, do którego należy ten pierwiastek.

Symbol pierwiastka Numer grupy Symbol bloku
 

1.2. (0–1)

Uzupełnij poniższy schemat. Przedstaw pełną konfigurację elektronową atomu (w stanie podstawowym) pierwiastka X. Zastosuj schemat klatkowy. W zapisie uwzględnij numery powłok i symbole podpowłok.

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 24. (3 pkt)

Elektrony w atomach, orbitale Rodzaje wiązań i ich właściwości Zamknięte (np. testowe, prawda/fałsz) Podaj/wymień Narysuj/zapisz wzór

Poniżej przedstawiono konfigurację elektronową atomów w stanie podstawowym wybranych metali należących do 1. grupy układu okresowego pierwiastków. Metale te oznaczono numerami I, II i III.

I: 1s22s1
II: 1s22s22p63s23p64s1
III: 1s22s22p63s1

Pierwsza energia jonizacji to energia, jaką należy dostarczyć, aby oderwać elektron od obojętnego atomu.

a)Zaznacz poprawne dokończenie zdania.

Najmniejszą pierwszą energię jonizacji ma atom pierwiastka oznaczonego numerem

  1. I, ponieważ jego elektron walencyjny jest najmniej oddalony od jądra atomowego.
  2. I, ponieważ ma obsadzone elektronami tylko dwie powłoki elektronowe.
  3. II, ponieważ jego elektron walencyjny jest najbardziej oddalony od jądra atomowego.
  4. III, ponieważ ma najmniejszą elektroujemność.
b)Określ liczbę elektronów w rdzeniu atomu metalu oznaczonego numerem III.
c)Napisz wzór sumaryczny związku metalu oznaczonego numerem II z chlorem i określ charakter wiązania chemicznego (jonowe, kowalencyjne niespolaryzowane, kowalencyjne spolaryzowane), które w tym związku występuje.

Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015)Zadanie 23. (2 pkt)

Struktura atomu - ogólne Elektrony w atomach, orbitale Narysuj/zapisz wzór Podaj/wymień

Zależnie od tego, czy pierwiastek dąży do tworzenia jonów dodatnich, czy ujemnych, rozróżnia się pierwiastki elektrododatnie i elektroujemne. Pierwiastki elektroujemne mają wiele elektronów walencyjnych, a pobierając elektrony, tworzą jony ujemne o trwałej konfiguracji elektronowej. Pierwiastki elektrododatnie, oddając elektrony, tworzą jony dodatnie o trwałej konfiguracji.

Na podstawie: K.H. Lautenschläger, W. Schröter, A. Wanninger, Nowoczesne kompendium chemii, Warszawa 2007, s. 89.

Atom pewnego pierwiastka ma w stanie podstawowym następującą konfigurację elektronową:

1s22s22p63s23p63d54s1

Tlenek i wodorotlenek tego pierwiastka, w których przyjmuje on pewien stopień utlenienia, wykazują właściwości amfoteryczne. Na tym stopniu utlenienia opisany pierwiastek występuje także w postaci jonów prostych.

a)Napisz wzór i skróconą konfigurację elektronową tego jonu prostego opisanego pierwiastka.
b)Podaj wartość głównej liczby kwantowej n i wartość pobocznej liczby kwantowej l opisujących stan dowolnego niesparowanego elektronu walencyjnego w tym jonie.

Strony