Ekspresja informacji genetycznej

Oto lista zadań maturalnych z danego działu biologii. Aby skorzystać z dodatkowych opcji, uniknąć duplikatów zadań lub wybrać zadania z pozostałych działów kliknij poniżej.

Przejdź do wyszukiwarki zadań

 

Matura Maj 2012, Poziom podstawowy (Formuła 2007)Zadanie 23. (2 pkt)

Ekspresja informacji genetycznej Podaj/wymień

Na schemacie przedstawiono przepływ informacji genetycznej od DNA do białka.

Ekspresja informacji genetycznej
a)Podaj nazwy procesów oznaczonych na schemacie literami X i Y, wybierając je spośród wymienionych.

translacja,       transkrypcja,       transdukcja

X.
Y.

b)Podaj nazwy trzech rodzajów RNA wytwarzanych w procesie X. Podkreśl ten rodzaj kwasu, który zawiera informację o składzie aminokwasów syntetyzowanego białka.

Matura Maj 2015, Poziom rozszerzony (Formuła 2015)Zadanie 19. (4 pkt)

Skład organizmów Ekspresja informacji genetycznej Mutacje Podaj i uzasadnij/wyjaśnij

Cząsteczka insuliny składa się z dwóch różnych łańcuchów polipeptydowych – A i B. Występują w niej trzy mostki dwusiarczkowe stabilizujące strukturę cząsteczki: jeden w łańcuchu polipeptydowym A oraz dwa – łączące łańcuchy A i B. Początek sekwencji kodującej (znajdującej się na nici nieulegającej transkrypcji) genu kodującego jeden z łańcuchów polipeptydowych insuliny jest następujący:

5’ ATGGCCCTGTGGATGCGCCTCCTGCCCCTGCTGGCG ... 3’.

Podczas eksperymentu użyto czynnika mutagennego, który w dwu przypadkach wywołał delecje, tzn. transkrybowane mRNA było pozbawione fragmentu sekwencji składającego się z kolejnych nukleotydów. W wyniku translacji powstały łańcuchy polipeptydowe (1. i 2.) o innej sekwencji aminokwasów niż w łańcuchu prawidłowym.

I. przypadek – polipeptyd 1. powstał na podstawie delecji 4 nukleotydów (od 10 do 13 nukleotydu sekwencji kodującej włącznie)
II. przypadek – polipeptyd 2. powstał na podstawie delecji 9 nukleotydów (od 10 do 18 nukleotydu sekwencji kodującej włącznie).

19.1. (0–1)

Na podstawie tekstu uzasadnij, że cząsteczka insuliny ma strukturę III- i IV-rzędową.

Struktura III-rzędowa:

Struktura IV-rzędowa:
 

19.2. (0–1)

Określ, który polipeptyd (1. czy 2.) będzie miał bardziej zmienioną sekwencję aminokwasów w porównaniu z polipeptydem prawidłowym. Odpowiedź uzasadnij.
 

19.3. (0–1)

Podaj nazwę czwartego aminokwasu w sekwencji prawidłowego polipeptydu oraz nazwę czwartego aminokwasu w polipeptydzie 1. Przyjmij założenie, że w ich skład nie wchodzi aminokwas kodowany przez kodon START.

Polipeptyd prawidłowy:
Polipeptyd 1:
 

19.4. (0–1)

Określ, czy opisane mutacje mogły być spowodowane działaniem kolchicyny, która jest czynnikiem mutagennym blokującym wrzeciono kariokinetyczne. Odpowiedź uzasadnij.

Matura Maj 2015, Poziom rozszerzony (Formuła 2007)Zadanie 22. (1 pkt)

Ekspresja informacji genetycznej Zamknięte (np. testowe, prawda/fałsz)

Poniżej wymieniono procesy (A–D) dotyczące kwasów nukleinowych i zachodzące u organizmów eukariotycznych.

Wybierz właściwe nazwy procesów spośród A–D i przyporządkuj je do nazw produktów 1. i 2., które powstają w wyniku przebiegu tych procesów. Zapisz ich oznaczenia literowe.

  1. replikacja
  2. translacja
  3. transkrypcja
  4. odwrotna transkrypcja
  1. DNA
  2. RNA

Matura Maj 2014, Poziom rozszerzony (Formuła 2007)Zadanie 26. (1 pkt)

Ekspresja informacji genetycznej Podaj/wymień

Na schemacie przedstawiono budowę cząsteczki tRNA uczestniczącej w procesie translacji, a w tabeli – fragment kodu genetycznego.

tRNA
Kodon (zapisany od końca 5' do 3') Aminokwas
AUA izoleucyna
AUC izoleucyna
AUG metionina
UAC tyrozyna
UAG STOP
CAU histydyna
CUA leucyna
GUA walina

Zapisz triplet nukleotydów w kodonie mRNA oznaczony jako XYZ oraz nazwę aminokwasu, który zostanie przyłączony do przedstawionej cząsteczki tRNA.

Kodon

Aminokwas

Matura Maj 2014, Poziom podstawowy (Formuła 2007)Zadanie 23. (2 pkt)

Ekspresja informacji genetycznej Podaj/wymień

Każdy rodzaj cząsteczki tRNA ma zdolność przyłączania określonego aminokwasu i dzięki sekwencji trzech nukleotydów zwanej antykodonem rozpoznaje komplementarny dla niego kodon w mRNA.
Na schemacie przedstawiono fragment nici mRNA oraz trzy cząsteczki tRNA (A–C), przenoszące aminokwasy zapisane w tym fragmencie (te cząsteczki ułożono w sposób przypadkowy). Strzałką oznaczono kierunek odczytu informacji genetycznej. W tabeli zamieszczono fragment kodu genetycznego.

Synteza białek
a)Ustal, jaka będzie kolejność tRNA, oznaczonych literami A, B i C, przyłączanych w procesie syntezy białka na matrycy mRNA o podanej sekwencji nukleotydów.

Kolejność tRNA

b)Na podstawie tabeli z fragmentem kodu genetycznego zapisz nazwy kolejnych aminokwasów (oznaczonych na schemacie literami X, Y, Z) w powstałym trójpeptydzie.

Matura Maj 2013, Poziom podstawowy (Formuła 2007)Zadanie 23. (1 pkt)

Ekspresja informacji genetycznej Zamknięte (np. testowe, prawda/fałsz)

Oceń prawdziwość informacji dotyczących kodu genetycznego. Wpisz w tabelę literę P, jeśli zdanie jest prawdziwe, lub literę F, jeśli zdanie jest fałszywe.

P/F
A Kodon zawsze składa się z trzech nukleotydów.
B Niektóre kodony mogą wyznaczać więcej niż jeden aminokwas.
C Każdy z 64 kodonów kodu genetycznego odpowiada konkretnemu aminokwasowi.

Matura Czerwiec 2013, Poziom rozszerzony (Formuła 2007)Zadanie 30. (2 pkt)

Ekspresja informacji genetycznej Podaj i uzasadnij/wyjaśnij

Odkryto, że przed procesem translacji część transkrybowanego RNA może podlegać procesowi tzw. edycji, który zmienia jego sekwencję tak, że różni się ona od wyjściowej sekwencji DNA. U ssaków występują dwa rodzaje edycji RNA. Przykładem jednego z nich jest przekształcenie adenozyny (A) w inozynę (I), która jest rozpoznawana przez aparat translacyjny jako guanina (G). Stwierdzono, że miejsce modyfikacji mRNA wyznaczane jest przez sekwencje intronowe, a katalizatorem tego procesu jest enzym, tzw. ADAR. Nieodzownym elementem inicjującym aktywność tego enzymu jest powstanie dwuniciowego RNA poprzez parowanie sekwencji intronowych i eksonów.

Na podstawie: M. Sacharczuk, K. Jaszczak i A. H. Świergiel, Funkcjonalne znaczenie redagowania transkryptów przez deaminazę adenozyny dwuniciowego RNA, Kosmos, tom 53, nr 2 (263)/2004.
a)Na podstawie analizy powyższego tekstu podaj, czy ADAR działa przed, czy po procesie składania eksonów (splicingu). Odpowiedź uzasadnij.
b)Podaj, jaki będzie efekt procesu edycji w wytworzonym białku, zakładając że nastąpił on w miejscu CAG w eksonie danego genu. Wykorzystaj fragment zamieszczonej tabeli kodu genetycznego.

Białko bez działania procesu edycji
Nowe białko po procesie edycji

Pierwszy nukleotyd
Drugi nukleotyd
Trzeci nukleotyd
U C A G
C Leu Pro His Arg U
Leu Pro His Arg C
Leu Pro Glu NH2
Arg A
Leu Pro Glu NH2 Arg G
A Ileu Tre Asp NH2
Ser U
Ileu Tre Asp NH2 Ser C
Ileu Tre Liz Arg A
Met Tre Liz Arg G
G Wal Ala Asp Gli U
Wal Ala Asp Gli C
Wal Ala Glu Gli A
Wal Ala Glu Gli G

Strony