Chemia - Matura Maj 2016, Poziom rozszerzony (stary)

Zadanie 1. (2 pkt)

Elektrony w atomach, orbitale Układ okresowy pierwiastków Uzupełnij/narysuj wykres, schemat lub tabelę

Z konfiguracji elektronowej atomu (w stanie podstawowym) pierwiastka X wynika, że w tym atomie:

  • elektrony rozmieszczone są na czterech powłokach elektronowych
  • na podpowłoce 3d liczba elektronów sparowanych jest dwa razy mniejsza od liczby elektronów niesparowanych.

1.1. (0–1)

Uzupełnij poniższą tabelę – wpisz symbol pierwiastka X, dane dotyczące jego położenia w układzie okresowym oraz symbol bloku konfiguracyjnego (energetycznego), do którego należy pierwiastek X.

Symbol pierwiastka Numer okresu Numer grupy Symbol bloku
       

1.2. (0–1)

Uzupełnij poniższy zapis (stosując schematy klatkowe), tak aby przedstawiał on konfigurację elektronową atomu w stanie podstawowym pierwiastka X. W zapisie tym uwzględnij numery powłok i symbole podpowłok. Podkreśl ten fragment konfiguracji, który nie występuje w konfiguracji elektronowej jonu X2+ (stan podstawowy).

Rozwiązanie: 
Pokaż

Zadanie 4. (1 pkt)

Właściwości fizyczne cieczy i gazów Podaj/wymień

Poniżej przedstawiono diagram fazowy wody. Diagram ten określa wartości ciśnienia i temperatury, w których trwała jest dana faza (stała, ciekła, gazowa). Linie ciągłe wyznaczają warunki, w których ustala się równowaga między dwiema fazami. Trzy fazy współistnieją w stanie równowagi jedynie w punkcie potrójnym PP (p = 6,105 hPa, t = 0,0075°C).

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.

Na podstawie diagramu fazowego wody uzupełnij poniższe zdania. W zdaniu 1. wybierz i zaznacz jedno określenie spośród podanych w nawiasie, a w zdaniu 2. wpisz wartość temperatury.

  1. Temperatura wrzenia wody przy zmianie ciśnienia zewnętrznego z 1013 hPa do 900 hPa (nie ulega zmianie / wzrasta / maleje).
  2. Temperatura, poniżej której – przy odpowiednim ciśnieniu – możliwa jest sublimacja lodu, jest równa °C.
Rozwiązanie: 
Pokaż

Zadanie 5. (2 pkt)

Właściwości fizyczne cieczy i gazów Oblicz

Gęstość pewnego gazu w temperaturze t = 25°C i pod ciśnieniem 1013 hPa jest równa d = 1,15 g ⋅ dm−3 .

Oblicz gęstość tego gazu w warunkach normalnych. Wynik podaj z dokładnością do drugiego miejsca po przecinku. Stała gazowa R = 83,14 hPa ⋅ dm3 ⋅ K−1 ⋅ mol−1 .

 

 

 

Odpowiedź:

Rozwiązanie: 
Pokaż

Zadanie 6. (2 pkt)

Rodzaje wiązań i ich właściwości Hybrydyzacja orbitali Uzupełnij/narysuj wykres, schemat lub tabelę Podaj/wymień

6.1. (0–1)

Uzupełnij poniższą tabelę − wpisz liczbę wolnych par elektronowych oraz liczbę wiązań σ i π w cząsteczkach CO2 i BCl3.

Wzór
związku
Liczba
wolnych par elektronowych wiązań σ wiązań π
CO2
BCl3

6.2. (0–1)

Określ kształt (liniowy, tetraedryczny, trójkątny) cząsteczek obu związków.

Kształt cząsteczki CO2:

Kształt cząsteczki BCl3:

Rozwiązanie: 
Pokaż

Zadanie 7. (2 pkt)

Stan równowagi Stechiometryczny stosunek reagentów Oblicz

W temperaturze 800 K stężeniowa stała równowagi reakcji przebiegającej zgodnie z równaniem

CO (g) + H2O (g) ⇄ CO2 (g) + H2 (g)

jest równa 4.

Oblicz, ile moli wody (w postaci pary wodnej) należy wprowadzić do reaktora o pojemności 1 dm3, w którym znajduje się 30 moli tlenku węgla(II), aby otrzymać 10 moli wodoru w temperaturze 800 K. Reakcja pary wodnej i tlenku węgla(II) przebiega w zamkniętym reaktorze.

Obliczenia:

 

 

 

Odpowiedź:

Rozwiązanie: 
Pokaż

Zadanie 8. (1 pkt)

Kinetyka i statyka chemiczna - ogólne Podaj/wymień

Wodny roztwór chlorku amonu można otrzymać dwiema metodami (I i II) podanymi poniżej. W obu metodach substancjami wyjściowymi są: gazowy HCl, gazowy NH3 oraz woda.

Metoda I Metoda II
NH3 (g)
H2O
NH3 (aq)
HCl (g)
H2O
HCl (aq)
NH3 (g) + HCl (g) → NH4Cl (s)
NH3 (aq) + HCl (aq) → NH4Cl (aq)
NH4Cl (s)
H2O
NH4Cl (aq)

Do otrzymania wodnego roztworu chlorku amonu zastosowano metodę I i metodę II. W obu metodach wszystkie etapy prowadzono pod jednakowym ciśnieniem p. Każdą metodą otrzymano po 1 dm3 roztworu NH4Cl o stężeniu molowym cm i temperaturze T.

Uzupełnij poniższe zdania – wpisz określenie mniejsza niż, większa niż lub taka sama jak.

Entalpia reakcji otrzymywania roztworu chlorku amonu metodą I jest entalpia reakcji otrzymywania tego roztworu metodą II.
Ilość wody potrzebna do przygotowania roztworu chlorku amonu metodą I jest ilość wody potrzebna do przygotowania tego roztworu metodą II.

Rozwiązanie: 
Pokaż

Zadanie 9. (1 pkt)

Reakcje i właściwości kwasów i zasad Napisz równanie reakcji

Wodny roztwór chlorku amonu można otrzymać dwiema metodami (I i II) podanymi poniżej. W obu metodach substancjami wyjściowymi są: gazowy HCl, gazowy NH3 oraz woda.

Metoda I Metoda II
NH3 (g)
NH3 (aq)
HCl (g)
HCl (aq)
NH3 (g) + HCl (g) → NH4Cl (s)
NH3 (aq) + HCl (aq) → NH4Cl (aq)
NH4Cl (s)
NH4Cl (aq)

Stosując definicje kwasu i zasady Brønsteda, napisz równanie reakcji, która potwierdza kwasowy odczyn wodnego roztworu chlorku amonu.

Substraty
kwas 1 + zasada 2
   
Produkty
zasada 1 + kwas 2
   
Rozwiązanie: 
Pokaż

Zadanie 10. (1 pkt)

pH, dysocjacja Podaj i uzasadnij/wyjaśnij

Wodny roztwór amoniaku ogrzano, a następnie ochłodzono do początkowej temperatury. Objętość roztworu praktycznie się nie zmieniła, ale jego pH uległo zmianie.

Oceń, jak zmieniło się (wzrosło czy zmalało) pH tego roztworu. Odpowiedź uzasadnij.

pH roztworu

Uzasadnienie:

Rozwiązanie: 
Pokaż

Zadanie 11. (2 pkt)

Kinetyka i statyka chemiczna - ogólne Roztwory i reakcje w roztworach wodnych - ogólne Napisz równanie reakcji Podaj/wymień

W celu zbadania efektu cieplnego reakcji chemicznych przeprowadzono cztery doświadczenia oznaczone numerami I–IV. Mieszano po 100 cm3 wodnych roztworów substancji, wymienionych w odpowiednich wierszach tabeli, o stężeniu molowym 0,2 mol ⋅ dm−3 i o początkowej temperaturze równej 25°C. Następnie zmierzono temperaturę każdej z otrzymanych mieszanin.

Numer doświadczenia Substancja rozpuszczona w 1. roztworze Substancja rozpuszczona w 2. roztworze
I chlorek baru siarczan(VI) sodu
II kwas solny wodorotlenek potasu
III wodorotlenek baru kwas siarkowy(VI)
IV kwas azotowy(V) wodorotlenek sodu

Zaobserwowano, że w każdym doświadczeniu temperatura uzyskanych mieszanin była wyższa niż temperatura użytych roztworów i że przyrost temperatury ΔT w niektórych doświadczeniach był taki sam.

21.1. (0–1)

Napisz w formie jonowej równanie reakcji ilustrujące przemiany, które dokonały się podczas doświadczenia oznaczonego numerem III.

21.2. (0–1)

Napisz numery wszystkich doświadczeń, w których zaobserwowany wzrost temperatury ΔT był jednakowy.

Rozwiązanie: 
Pokaż

Zadanie 12. (3 pkt)

Reakcje i właściwości kwasów i zasad Napisz równanie reakcji Zaprojektuj doświadczenie Podaj/zinterpretuj przebieg reakcji

Zaprojektuj doświadczenie, które pozwoli na odróżnienie rozcieńczonych wodnych roztworów: roztworu KOH znajdującego się w probówce I od roztworu H2SO4 obecnego w probówce II.

12.1. (0-1)

Uzupełnij schemat doświadczenia – wpisz wzór odczynnika wybranego spośród następujących:

  • K2CrO4 (aq)
  • KNO3 (aq)
  • KMnO4 (aq)

12.2. (0-1)

Napisz w formie jonowej skróconej równanie reakcji, która zaszła podczas przeprowadzonego eksperymentu.

12.3. (0-1)

Napisz, jakie obserwacje potwierdzą, że w probówce I znajdował się wodny roztwór wodorotlenku potasu, a w probówce II – wodny roztwór kwasu siarkowego(VI). Wypełnij poniższą tabelę.

Barwa wodnego roztworu
wybranego odczynnika
Barwa zawartości probówki po zmieszaniu roztworów
probówka I probówka II
     
Rozwiązanie: 
Pokaż

Zadanie 14. (1 pkt)

pH, dysocjacja Podaj i uzasadnij/wyjaśnij

Wskaźniki kwasowo-zasadowe to związki chemiczne, które przyjmują różne zabarwienia w roztworach o różnych odczynach. Barwa roztworu zależy od formy, w jakiej wskaźnik występuje w roztworze. Dla każdego wskaźnika można określić charakterystyczny zakres pH, w którym następuje zmiana zabarwienia wskaźnika. Poniżej scharakteryzowano trzy wskaźniki kwasowo-zasadowe.

Wskaźnik Zabarwienie wskaźnika w roztworze o pH Zakres pH zmiany barwy
oranż metylowy poniżej 3,1 czerwone powyżej 4,4 żółte 3,1 – 4,4
czerwień bromofenolowa poniżej 5,2 żółte powyżej 6,8 czerwone 5,2 – 6,8
fenoloftaleina poniżej 8,3 brak zabarwienia powyżej 10,0 malinowe 8,3 – 10,0

Na podstawie: J. Minczewski, Z. Marczenko: Chemia analityczna. Podstawy teoretyczne i analiza jakościowa, Warszawa 2001.

Oceń, czy poniższe zdanie jest prawdziwe. Odpowiedź uzasadnij.

Oranż metylowy w roztworach o odczynie kwasowym barwi się na czerwono, w roztworach o odczynie obojętnym barwi się na pomarańczowo, a w roztworach o odczynie zasadowym – na żółto.

Zdanie jest .

Uzasadnienie:

Rozwiązanie: 
Pokaż

Zadanie 15. (2 pkt)

pH, dysocjacja Podaj/wymień

Wskaźniki kwasowo-zasadowe to związki chemiczne, które przyjmują różne zabarwienia w roztworach o różnych odczynach. Barwa roztworu zależy od formy, w jakiej wskaźnik występuje w roztworze. Dla każdego wskaźnika można określić charakterystyczny zakres pH, w którym następuje zmiana zabarwienia wskaźnika. Poniżej scharakteryzowano trzy wskaźniki kwasowo-zasadowe.

Wskaźnik Zabarwienie wskaźnika w roztworze o pH Zakres pH zmiany barwy
oranż metylowy poniżej 3,1 czerwone powyżej 4,4 żółte 3,1 – 4,4
czerwień bromofenolowa poniżej 5,2 żółte powyżej 6,8 czerwone 5,2 – 6,8
fenoloftaleina poniżej 8,3 brak zabarwienia powyżej 10,0 malinowe 8,3 – 10,0

Na podstawie: J. Minczewski, Z. Marczenko: Chemia analityczna. Podstawy teoretyczne i analiza jakościowa, Warszawa 2001.

W trzech nieoznakowanych probówkach umieszczono następujące roztwory:

  • kwas solny o pH = 1
  • wodny roztwór KCl o pH = 7
  • wodny roztwór KOH o pH = 13

W celu identyfikacji roztworów wykonano doświadczenie. W etapie I obserwowano zabarwienie czerwieni bromofenolowej w każdym z nich.

15.1. (0-1)

Określ zabarwienie czerwieni bromofenolowej w każdym z badanych roztworów.

kwas solny wodny roztwór KCl wodny roztwór KOH
Zabarwienie czerwieni bromofenolowej

15.2. (0-1)

Spośród scharakteryzowanych wskaźników wybierz ten, którego należy użyć w II etapie doświadczenia, aby (uwzględniając wynik I etapu) zidentyfikować każdy badany roztwór.

Wybrany wskaźnik:

Rozwiązanie: 
Pokaż

Zadanie 16. (2 pkt)

pH, dysocjacja Podaj/wymień

Wskaźniki kwasowo-zasadowe to związki chemiczne, które przyjmują różne zabarwienia w roztworach o różnych odczynach. Barwa roztworu zależy od formy, w jakiej wskaźnik występuje w roztworze. Dla każdego wskaźnika można określić charakterystyczny zakres pH, w którym następuje zmiana zabarwienia wskaźnika. Poniżej scharakteryzowano trzy wskaźniki kwasowo-zasadowe.

Wskaźnik Zabarwienie wskaźnika w roztworze o pH Zakres pH zmiany barwy
oranż metylowy poniżej 3,1 czerwone powyżej 4,4 żółte 3,1 – 4,4
czerwień bromofenolowa poniżej 5,2 żółte powyżej 6,8 czerwone 5,2 – 6,8
fenoloftaleina poniżej 8,3 brak zabarwienia powyżej 10,0 malinowe 8,3 – 10,0

Na podstawie: J. Minczewski, Z. Marczenko: Chemia analityczna. Podstawy teoretyczne i analiza jakościowa, Warszawa 2001.

Zmiany struktury oranżu metylowego podczas zmiany pH roztworu ilustruje poniższy schemat.

Formy I i II oranżu metylowego stanowią sprzężoną parę kwas – zasada Brønsteda.

16.1. (0-1)

Określ funkcję (kwas albo zasada Brønsteda), jaką w przemianie opisanej powyższym schematem pełni oranż metylowy w formie I.

16.2. (0-1)

Napisz, jaką barwę nadaje roztworowi oranż metylowy występujący w formie II.

Rozwiązanie: 
Pokaż

Zadanie 17. (1 pkt)

Stężenia roztworów Podaj/wymień

Halogenki srebra są związkami trudno rozpuszczalnymi w wodzie. Ich iloczyny rozpuszczalności w temperaturze 25°C wynoszą:

Wzór soli Wyrażenie na iloczyn rozpuszczalności Wartość iloczynu rozpuszczalności
AgCl Ks(AgCl) = [Ag+] ⋅ [Cl] 1,6 ⋅ 10−10
AgBr Ks(AgBr) = [Ag+] ⋅ [Br] 7,7 ⋅10−13
AgI Ks(AgI) = [Ag+] ⋅ [I] 1,5 ⋅10−16

Na podstawie: K.-H. Lautenschläger, W. Schröter, A. Wanninger, Nowoczesne kompendium chemii, Warszawa 2007.

Podaj wzór halogenku srebra, którego rozpuszczalność w wodzie jest najmniejsza.

Rozwiązanie: 
Pokaż

Zadanie 18. (2 pkt)

Stężenia roztworów Oblicz

Halogenki srebra są związkami trudno rozpuszczalnymi w wodzie. Ich iloczyny rozpuszczalności w temperaturze 25°C wynoszą:

Wzór soli Wyrażenie na iloczyn rozpuszczalności Wartość iloczynu rozpuszczalności
AgCl Ks(AgCl) = [Ag+] ⋅ [Cl] 1,6 ⋅ 10−10
AgBr Ks(AgBr) = [Ag+] ⋅ [Br] 7,7 ⋅10−13
AgI Ks(AgI) = [Ag+] ⋅ [I] 1,5 ⋅10−16

Na podstawie: K.-H. Lautenschläger, W. Schröter, A. Wanninger, Nowoczesne kompendium chemii, Warszawa 2007.

Oblicz, ile moli jonów srebra znajduje się w 1 dm3 nasyconego w temperaturze 25°C wodnego roztworu chlorku srebra.

Rozwiązanie: 
Pokaż

Zadanie 19. (2 pkt)

Bilans elektronowy Napisz równanie reakcji

Do zakwaszonego wodnego roztworu manganianu(VII) potasu dodano wodny roztwór nadtlenku wodoru. Zaobserwowano, że początkowo fioletowy roztwór uległ odbarwieniu, a zawartość probówki zaczęła się pienić.

Napisz w formie jonowej skróconej z uwzględnieniem pobranych lub oddanych elektronów (zapis jonowo-elektronowy) równania procesów redukcji i utleniania, zachodzących w czasie opisanej reakcji. Uwzględnij, że reakcja przebiega w środowisku kwasowym.

Równanie procesu redukcji:

Równanie procesu utleniania:

Rozwiązanie: 
Pokaż

Zadanie 20. (3 pkt)

Elektrochemia Oblicz Napisz równanie reakcji Zamknięte (np. testowe, prawda/fałsz)

Zbudowano ogniwo według schematu przedstawionego na poniższym rysunku.

20.1. (0-1)

Oblicz siłę elektromotoryczną (SEM) ogniwa, którego schemat przedstawionorysunku, w warunkach standardowych.

SEM =

20.2. (0-1)

Napisz w formie jonowej skróconej sumaryczne równanie reakcji zachodzącej w czasie pracy tego ogniwa.

SEM ogniwa galwanicznego zależy nie tylko od wartości potencjału standardowego półogniw, z których jest zbudowane, lecz także od stężenia jonów w roztworach tworzących półogniwa. Wartość potencjału półogniwa E – wyrażonego w woltach – oblicza się z równania Nernsta. Dla półogniwa metalicznego równanie to określa wpływ stężenia jonów metalu [Mez+] na wartość potencjału półogniwa i dla T = 298 K przyjmuje postać:

E = E° + 0,059z ⋅ log[Mez+]

gdzie: E° to potencjał standardowy półogniwa, z – liczba elektronów różniących formę utlenioną metalu od jego formy zredukowanej w procesie Me ⇄ Mez+ + ze .

20.3. (0-1)

Uzupełnij poniższe zdania. Wybierz i zaznacz właściwe wzory spośród podanych w nawiasach.

  1. Podczas pracy opisanego ogniwa ubywa jonów (Cd2+ / Ni2+).
  2. Aby zwiększyć siłę elektromotoryczną tego ogniwa, należy zwiększyć stężenie (CdCl2 (aq) / NiCl2 (aq)).
Rozwiązanie: 
Pokaż

Zadanie 21. (2 pkt)

Podstawy chemii organicznej Podaj i uzasadnij/wyjaśnij

Poniżej podano wzory półstrukturalne (grupowe) lub uproszczone czterech węglowodorów.

Uzupełnij poniższe zdania, tak aby powstały informacje prawdziwe.

  1. Związek oznaczony literą B nie występuje w postaci izomerów geometrycznych cis–trans, ponieważ
  2. Węgiel stanowi taki sam procent masy cząsteczek związków oznaczonych literami: .............................................. . Wzór empiryczny (elementarny) związku oznaczonego literą D jest następujący: ............................................. .
Rozwiązanie: 
Pokaż

Zadanie 22. (2 pkt)

Węglowodory - ogólne Zamknięte (np. testowe, prawda/fałsz)

Poniżej podano wzory półstrukturalne (grupowe) lub uproszczone czterech węglowodorów.

Uzupełnij poniższe zdania – wybierz i zaznacz właściwe nazwy lub litery spośród podanych w nawiasach.

  1. Nitrowanie związku oznaczonego literą D jest reakcją (addycji / eliminacji / substytucji) przebiegającą według mechanizmu (elektrofilowego / nukleofilowego / rodnikowego).
  2. Z bromem reagują łatwo – bez użycia katalizatora, bez ogrzewania, w ciemności – związki oznaczone literami (A / B / C / D), natomiast reakcja związku oznaczonego literą (A / B / C / D) z tym odczynnikiem wymaga użycia katalizatora, np. FeBr3. Monomerem w reakcji polimeryzacji prowadzącej do powstania poli(octanu winylu) jest związek o wzorze CH2=CH‒O‒COCH3, otrzymywany przez katalityczne przyłączenie kwasu etanowego (octowego) do związku oznaczonego literą (A / B / C / D).
Rozwiązanie: 
Pokaż

Zadanie 24. (1 pkt)

Podstawy chemii organicznej Węglowodory alifatyczne Narysuj/zapisz wzór Uzupełnij/narysuj wykres, schemat lub tabelę

Przeprowadzono ciąg przemian opisany poniższym schematem.

Uzupełnij poniższą tabelę. Podaj wzór półstrukturalny (grupowy) związku organicznego oznaczonego na schemacie literą B. Określ typ reakcji (addycja, eliminacja, substytucja), w wyniku której powstaje związek C.

Wzór półstrukturalny (grupowy) Typ reakcji
związek B substytucja
związek C
Rozwiązanie: 
Pokaż

Zadanie 25. (1 pkt)

Węglowodory - ogólne Podaj/wymień

Budowę związku X opisuje następujący wzór:

W cząsteczce związku X można wyróżnić atomy węgla o różnej rzędowości.

Określ rzędowość atomów węgla oznaczonych numerami 2, 3 i 4.

Rzędowość atomu węgla

numer 2: ...............................
numer 3: ...............................
numer 4: ...............................
Rozwiązanie: 
Pokaż

Zadanie 26. (2 pkt)

Prawo stałości składu Stechiometryczny stosunek reagentów Węglowodory alifatyczne Oblicz

Próbkę 0,86 grama pewnego alkanu poddano całkowitemu spaleniu, a cały otrzymany w tej reakcji tlenek węgla(IV) pochłonięto w wodzie wapiennej, w której zaszła reakcja zgodnie z równaniem:

CO2 + Ca(OH)2 → CaCO3 + H2O

Otrzymany osad ważył po wysuszeniu 6 gramów.

Ustal wzór sumaryczny tego alkanu. W obliczeniach zastosuj wartości masy molowej reagentów zaokrąglone do jedności.

Rozwiązanie: 
Pokaż

Zadanie 27. (3 pkt)

Roztwory i reakcje w roztworach wodnych - ogólne Napisz równanie reakcji Podaj/zinterpretuj przebieg reakcji Podaj i uzasadnij/wyjaśnij

W celu potwierdzenia, że pochodna toluenu o wzorze:

zawiera w swojej cząsteczce chlor, przeprowadzono trzyetapowe doświadczenie, którego przebieg opisano poniżej.

Etap I   
Do probówki z badaną substancją dodano nadmiar wodnego
roztworu wodorotlenku sodu. Mieszaninę łagodnie ogrzano.
Etap II  
Uzyskaną w etapie I mieszaninę zakwaszono kwasem X.
Etap III
Do mieszaniny otrzymanej w etapie II dodano wodny roztwór azotanu(V) srebra.

27.1. (0-1)

Opisz obserwacje towarzyszące przebiegowi etapu III doświadczenia i zapisz w formie jonowej skróconej równanie zachodzącej w tym etapie reakcji.

Obserwacje:

Równanie reakcji:

27.2. (0-1)

Napisz, dlaczego przed przeprowadzeniem etapu III należało do mieszaniny dodać kwas.

27.3. (0-1)

Spośród kwasów, których wzory podano poniżej, wybierz ten, który mógł zostać użyty w etapie II doświadczenia. Podkreśl jego wzór.

HCl
HNO3
H3PO4
Rozwiązanie: 
Pokaż

Zadanie 28. (3 pkt)

Węglowodory alifatyczne Napisz równanie reakcji

Propano-1,2,3-triol (glicerol) można otrzymać z propenu w trzyetapowym procesie. Propen poddaje się reakcji z chlorem w fazie gazowej w temperaturze 500°C. Ponieważ warunki te sprzyjają rodnikowemu mechanizmowi reakcji, nie następuje przyłączenie chloru do wiązania podwójnego, ale podstawienie jednego atomu chloru w grupie metylowej z utworzeniem 3-chloroprop-1-enu (reakcja numer 1). Powstały związek ulega hydrolizie, w wyniku czego powstaje nienasycony alkohol. Ponieważ większość halogenków reaguje z wodą zbyt wolno, aby reakcja przeprowadzana w ten sposób mogła mieć praktyczne znaczenie, hydrolizę prowadzi się, działając na halogenek wodnym roztworem wodorotlenku sodu lub potasu (reakcja numer 2). Otrzymany alkohol reaguje z nadtlenkiem wodoru w obecności katalizatora, w wyniku czego tworzy się propano-1,2,3-triol (reakcja numer 3).

Opisany trzyetapowy proces otrzymywania propano-1,2,3-triolu zilustrowano schematem.

propen 1 3-chloroprop-1-en 2 prop-2-en-1-ol 3 propano-1,2,3-triol

Napisz równania reakcji oznaczonych numerami 1, 2 oraz 3, stosując wzory półstrukturalne (grupowe) związków organicznych. Jeżeli reakcja wymaga użycia katalizatora, odpowiedniego środowiska lub ogrzewania, napisz to nad strzałką równania reakcji.

Równania reakcji:

Rozwiązanie: 
Pokaż

Zadanie 30. (1 pkt)

Hybrydyzacja orbitali Rodzaje wiązań i ich właściwości Zamknięte (np. testowe, prawda/fałsz)

Aldehyd cynamonowy to związek o wzorze:

Aldehyd ten występuje w przyrodzie w konfiguracji trans.

Oceń, czy poniższe informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, albo F – jeżeli jest fałszywa.

1. Masa cząsteczkowa aldehydu cynamonowego jest równa w zaokrągleniu do jedności, 132 u. P F
2. Orbitalom walencyjnym wszystkich atomów węgla w cząsteczce aldehydu cynamonowego przypisuje się ten sam typ hybrydyzacji. P F
3. W cząsteczce aldehydu cynamonowego występuje pięć zlokalizowanych wiązań typu π. P F
Rozwiązanie: 
Pokaż

Zadanie 31. (1 pkt)

Cukry proste Zamknięte (np. testowe, prawda/fałsz)

Poniżej przedstawiono wzory dwóch monosacharydów.

Oceń, czy poniższe informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, albo F – jeżeli jest fałszywa.

1. Oba monosacharydy należą do grupy heksoz. P F
2. Monosacharyd I daje pozytywny wynik próby Trommera, a monosacharyd II daje negatywny wynik tej próby. P F
3. Oba cukry reagują z wodorotlenkiem miedzi(II), w wyniku czego tworzą się rozpuszczalne kompleksy, których roztwory mają szafirową barwę. P F
Rozwiązanie: 
Pokaż

Zadanie 32. (1 pkt)

Cukry proste Podaj/wymień

Poniżej przedstawiono wzory Hawortha czterech odmian glukozy.

Podaj numery wzorów przedstawiających – odpowiednio – α-D-glukopiranozę, anomer związku opisanego wzorem II, enancjomer związku opisanego wzorem III.

α-D-glukopiranoza anomer związku opisanego wzorem II enancjomer związku opisanego wzorem III
numer wzoru
Rozwiązanie: 
Pokaż

Zadanie 33. (1 pkt)

Węglowodory - ogólne Uzupełnij/narysuj wykres, schemat lub tabelę

W produkcji witaminy C na skalę przemysłową wykorzystuje się metody chemiczne i biotechnologiczne. W pierwszym etapie pięcioetapowej syntezy glukoza jest redukowana do sorbitu (sorbitolu), który w następnym etapie poddany zostaje utlenieniu. Ponieważ nie ma takiego odczynnika chemicznego, który w sposób wystarczająco selektywny utleniłby tylko jedną z grup hydroksylowych do grupy karbonylowej, proces ten prowadzony jest enzymatycznie przy udziale mikroorganizmów Acetobacter suboxydans. Przebieg dwóch pierwszych etapów syntezy witaminy C zilustrowano na poniższym schemacie.

Na podstawie: John McMurry, Chemia organiczna, Warszawa 2000.

Uzupełnij wzory produktów I i II etapu syntezy witaminy C – wpisz w zaznaczone pola wzory odpowiednich fragmentów ich cząsteczek.

Rozwiązanie: 
Pokaż

Zadanie 34. (1 pkt)

Peptydy i białka Podaj/wymień

Glicyna (kwas aminoetanowy) zaliczana jest do aminokwasów obojętnych, które charakteryzują się punktami izoelektrycznymi w zakresie pH 5,0–6,5. Reaguje z kwasami i zasadami, a w odpowiednich warunkach ulega reakcji kondensacji. Po wprowadzeniu glicyny do świeżo uzyskanej zawiesiny wodorotlenku miedzi(II) tworzy się rozpuszczalny w wodzie związek kompleksowy, a powstający roztwór przyjmuje ciemnoniebieskie zabarwienie.

Na podstawie: J. McMurry, Chemia organiczna, Warszawa 2005.

W wyniku kondensacji glicyny otrzymano peptyd, któremu można przypisać wzór:

Ustal liczbę wiązań peptydowych w cząsteczce tego peptydu.

Rozwiązanie: 
Pokaż

Zadanie 35. (2 pkt)

Peptydy i białka Zaprojektuj doświadczenie Podaj/zinterpretuj przebieg reakcji

Glicyna (kwas aminoetanowy) zaliczana jest do aminokwasów obojętnych, które charakteryzują się punktami izoelektrycznymi w zakresie pH 5,0–6,5. Reaguje z kwasami i zasadami, a w odpowiednich warunkach ulega reakcji kondensacji. Po wprowadzeniu glicyny do świeżo uzyskanej zawiesiny wodorotlenku miedzi(II) tworzy się rozpuszczalny w wodzie związek kompleksowy, a powstający roztwór przyjmuje ciemnoniebieskie zabarwienie.

Na podstawie: J. McMurry, Chemia organiczna, Warszawa 2005.

W dwóch probówkach I i II umieszczono pewien odczynnik. Następnie do probówki I wprowadzono tripeptyd o sekwencji Gly-Gly-Gly, a do probówki II dodano produkt całkowitej hydrolizy tego tripeptydu. Objawy reakcji – zaobserwowane w obu probówkach – pozwoliły na potwierdzenie, że do probówki I dodano tripeptyd, a do probówki II – produkt jego całkowitej hydrolizy.

35.1. (0-1)

Uzupełnij schemat doświadczenia – wybierz i wpisz nazwę lub wzór użytego odczynnika:

  • woda bromowa
  • świeżo strącony wodorotlenek miedzi(II)
  • stężony roztwór kwasu azotowego(V)
  • wodny roztwór wodorowęglanu sodu

35.2. (0-1)

Wpisz do tabeli barwy roztworów otrzymanych w probówkach I i II po zakończeniu doświadczenia.

Probówka I Probówka II
                                                                                   
Rozwiązanie: 
Pokaż

Zadanie 36. (2 pkt)

Stężenia roztworów Oblicz

Glicyna (kwas aminoetanowy) zaliczana jest do aminokwasów obojętnych, które charakteryzują się punktami izoelektrycznymi w zakresie pH 5,0–6,5. Reaguje z kwasami i zasadami, a w odpowiednich warunkach ulega reakcji kondensacji. Po wprowadzeniu glicyny do świeżo uzyskanej zawiesiny wodorotlenku miedzi(II) tworzy się rozpuszczalny w wodzie związek kompleksowy, a powstający roztwór przyjmuje ciemnoniebieskie zabarwienie.

Na podstawie: J. McMurry, Chemia organiczna, Warszawa 2005.

Sporządzono 100 gramów wodnego roztworu pewnego dipeptydu. Stężenie roztworu wynosiło 10% masowych. Następnie przeprowadzono częściową hydrolizę dipeptydu znajdującego się w roztworze, w wyniku której jako jedyny produkt otrzymano glicynę w ilości 0,1 mola.

Oblicz stężenie dipeptydu, wyrażone w procentach masowych, w roztworze otrzymanym po częściowej hydrolizie, tzn. w momencie uzyskania 0,1 mola glicyny.

Rozwiązanie: 
Pokaż

Zadanie 37. (1 pkt)

Aminokwasy Zamknięte (np. testowe, prawda/fałsz)

Glicyna (kwas aminoetanowy) zaliczana jest do aminokwasów obojętnych, które charakteryzują się punktami izoelektrycznymi w zakresie pH 5,0–6,5. Reaguje z kwasami i zasadami, a w odpowiednich warunkach ulega reakcji kondensacji. Po wprowadzeniu glicyny do świeżo uzyskanej zawiesiny wodorotlenku miedzi(II) tworzy się rozpuszczalny w wodzie związek kompleksowy, a powstający roztwór przyjmuje ciemnoniebieskie zabarwienie.

Na podstawie: J. McMurry, Chemia organiczna, Warszawa 2005.

Oceń, czy poniższe informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, albo F – jeżeli jest fałszywa.

1. Glicyna jest niechiralnym aminokwasem białkowym. P F
2. W jonie obojnaczym glicyny grupą kwasową jest grupa –COO , a grupą zasadową jest grupa –NH+3 . P F
3. Glicyna w roztworach o wysokim pH występuje głównie w postaci kationów. P F
Rozwiązanie: 
Pokaż