Chemia - Matura Maj 2017, Poziom rozszerzony (Formuła 2015)

Zadanie 1. (3 pkt)

Elektrony w atomach, orbitale Układ okresowy pierwiastków Stopnie utlenienia Narysuj/zapisz wzór Uzupełnij/narysuj wykres, schemat lub tabelę

Dwa pierwiastki oznaczone literami X i Z leżą w czwartym okresie układu okresowego pierwiastków. Ponadto wiadomo, że w stanie podstawowym:

  • atom pierwiastka X ma na ostatniej powłoce sześć elektronów;
  • atom pierwiastka Z ma łącznie na ostatniej powłoce i na podpowłoce 3d sześć elektronów.

1.1. (0–1)

Uzupełnij poniższą tabelę. Wpisz symbole pierwiastków X i Z, dane dotyczące ich położenia w układzie okresowym oraz symbol bloku konfiguracyjnego, do którego należy każdy z pierwiastków.

Symbol pierwiastka Numer grupy Symbol bloku
pierwiastek X
pierwiastek Z

1.2. (0–1)

Wybierz pierwiastek (X albo Z), którego atomy w stanie podstawowym mają większą liczbę elektronów niesparowanych. Uzupełnij poniższy zapis, tak aby przedstawiał on konfigurację elektronową atomu w stanie podstawowym wybranego pierwiastka. Zastosuj schematy klatkowe, podaj numery powłok i symbole podpowłok.

1.3. (0–1)

Napisz wzór sumaryczny wodorku pierwiastka X oraz wzór sumaryczny tlenku pierwiastka Z, w którym ten pierwiastek przyjmuje maksymalny stopień utlenienia.

Wzór sumaryczny wodorku pierwiastka X:

Wzór sumaryczny tlenku pierwiastka Z:

Zadanie 2. (1 pkt)

Elektrony w atomach, orbitale Zamknięte (np. testowe, prawda/fałsz)

Miarą tendencji atomów do oddawania elektronów i przechodzenia w dodatnio naładowane jony jest energia jonizacji. Pierwsza energia jonizacji to minimalna energia potrzebna do oderwania jednego elektronu od atomu. Druga energia jonizacji jest minimalną energią potrzebną do usunięcia drugiego elektronu (z jednododatniego jonu).

Na wykresach przedstawiono zmiany pierwszej i drugiej energii jonizacji wybranych pierwiastków uszeregowanych według rosnącej liczby atomowej.

Na podstawie: P. Atkins, Chemia fizyczna, Warszawa 2007.

Uzupełnij poniższe zdania. Wybierz i zaznacz jedno określenie spośród podanych w każdym nawiasie.

  1. Lit ma wyższą wartość pierwszej energii jonizacji niż sód, ponieważ w jego atomie elektron walencyjny znajduje się (bliżej jądra / dalej od jądra) niż elektron walencyjny w atomie sodu. Oznacza to, że (łatwiej / trudniej) oderwać elektron walencyjny atomu litu niż elektron walencyjny atomu sodu.
  2. Wartości drugiej energii jonizacji berylu i magnezu są dużo (niższe / wyższe) niż wartości drugiej energii jonizacji litu i sodu, ponieważ atomy litowców po utracie jednego elektronu uzyskują trwałą konfigurację gazów szlachetnych. Atomy berylu, gdy oddają elektrony walencyjne, przechodzą w dodatnio naładowane jony o konfiguracji elektronowej helu, natomiast atomy magnezu – w dodatnio naładowane jony o konfiguracji elektronowej (argonu / neonu).

Zadanie 3. (2 pkt)

Rodzaje wiązań i ich właściwości Sole Napisz równanie reakcji Narysuj/zapisz wzór

Chlorek arsenu(III) – AsCl3 – jest w temperaturze pokojowej cieczą. W stanie ciekłym chlorek arsenu(III) nie przewodzi prądu elektrycznego. W reakcji z wodą tworzy kwas arsenowy(III) o wzorze H3AsO3 oraz chlorowodór.

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.

3.1. (0–1)

Czy chlorek arsenu(III) ma budowę kowalencyjną, czy – jonową? Narysuj wzór elektronowy chlorku arsenu(III). Uwzględnij wolne pary elektronowe.

Chlorek arsenu(III) ma budowę .

Wzór:

 

 

 

3.2. (0–1)

Napisz w formie cząsteczkowej równanie reakcji chlorku arsenu(III) z wodą.

Zadanie 4. (1 pkt)

Dysocjacja Podaj/wymień

Zależność między mocą kwasu Brønsteda a mocą zasady sprzężonej z tym kwasem opisuje równanie:

Ka · Kb = Kw

gdzie: Ka – stała dysocjacji kwasu, Kb – stała dysocjacji sprzężonej zasady, a Kw – iloczyn jonowy wody.

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.

Dane są kwasy karboksylowe o wzorach:

I CH3COOH
II CH3CH2COOH
III C6H5COOH

Uzupełnij poniższe zdania. Wpisz w wyznaczone miejsca odpowiednie wzory i podkreśl właściwe określenie spośród wymienionych w nawiasie.

Spośród związków oznaczonych numerami I, II i III najmocniejszym kwasem jest . Spośród zasad sprzężonych z kwasami I, II i III najsłabszą zasadą jest . W sprzężonej parze kwas–zasada im słabszy jest kwas, tym (mocniejsza / słabsza) jest sprzężona z nim zasada.

Zadanie 5. (1 pkt)

Wpływ czynników na przebieg reakcji Podaj/wymień

Reakcja syntezy amoniaku przebiega zgodnie z równaniem:

N2 (g) + 3H2 (g) ⇄ 2NH3 (g)

W poniższej tabeli zestawiono wartości stałej równowagi reakcji syntezy amoniaku w różnych temperaturach.

Temperatura, K 673 723 773 823 873
Stała równowagi 1,82 ⋅ 10−4 4,68 ⋅ 10−5 1,48 ⋅ 10−5 5,25 ⋅ 10−6 2,14 ⋅ 10−6

Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.

Przeanalizuj dane dotyczące syntezy amoniaku. Następnie uzupełnij zdania wyrażeniami spośród podanych poniżej.

zmaleje
wzrośnie
się nie zmieni

Jeżeli w układzie będącym w stanie równowagi nastąpi wzrost temperatury w warunkach izobarycznych (p = const), to wydajność reakcji syntezy amoniaku , natomiast przy wzroście ciśnienia w warunkach izotermicznych (T = const) wydajność tego procesu . Jeżeli zmaleje temperatura w układzie, to szybkość reakcji syntezy amoniaku .

Zadanie 6. (2 pkt)

Stechiometryczny stosunek reagentów Oblicz

Reakcja syntezy amoniaku przebiega zgodnie z równaniem:

N2 (g) + 3H2 (g) ⇄ 2NH3 (g)

W mieszaninie wodoru i azotu użytej do syntezy amoniaku zawartość wodoru wyrażona w procentach objętościowych jest równa 75%. Wydajność reakcji syntezy amoniaku przeprowadzonej w temperaturze T i pod ciśnieniem p jest równa 93%.

Oblicz wyrażoną w procentach objętościowych zawartość amoniaku w mieszaninie poreakcyjnej.

Zadanie 7. (1 pkt)

Szybkość reakcji Uzupełnij/narysuj wykres, schemat lub tabelę

Do reaktora wprowadzono próbkę gazowego związku A i zainicjowano reakcję:

A (g) ⇄ 2B (g)

Przemianę prowadzono w stałej objętości. Mierzono stężenie związku A w czasie trwania reakcji. Tę zależność przedstawiono na poniższym wykresie.

Na podstawie powyższych informacji narysuj wykres przedstawiający zależność stężenia związku B od czasu trwania reakcji.

Zadanie 8. (2 pkt)

Stechiometryczny stosunek reagentów Oblicz

Próbkę czystego węglanu wapnia o masie m prażono w otwartym naczyniu. Przebiegła wtedy reakcja zilustrowana równaniem:

CaCO3 → CaO + CO2

Po przerwaniu ogrzewania stwierdzono, że w naczyniu znajdowała się mieszanina substancji stałych o masie 18,0 gramów. Ustalono, że w tej mieszaninie zawartość węglanu wapnia wyrażona w procentach masowych jest równa 57,5%.

Oblicz masę m próbki węglanu wapnia poddanej prażeniu.

Zadanie 9. (1 pkt)

Sole Zaprojektuj doświadczenie Podaj/zinterpretuj przebieg reakcji

Próbkę czystego węglanu wapnia o masie m prażono w otwartym naczyniu. Przebiegła wtedy reakcja zilustrowana równaniem:

CaCO3 → CaO + CO2

Po przerwaniu ogrzewania stwierdzono, że w naczyniu znajdowała się mieszanina substancji stałych o masie 18,0 gramów. Ustalono, że w tej mieszaninie zawartość węglanu wapnia wyrażona w procentach masowych jest równa 57,5%.

Zaprojektuj doświadczenie, którym potwierdzisz, że w uzyskanej mieszaninie substancji stałych znajduje się węglan.

Uzupełnij schemat doświadczenia – podkreśl wzór jednego odczynnika, którego dodanie (w nadmiarze) do mieszaniny znajdującej się w probówce doprowadzi do potwierdzenia obecności węglanu, oraz opisz zmiany możliwe do zaobserwowania w czasie doświadczenia.

Schemat doświadczenia:

Zmiany możliwe do zaobserwowania w czasie doświadczenia:

Zadanie 10. (1 pkt)

Reakcje i właściwości kwasów i zasad Narysuj/zapisz wzór

Węglany w roztworach wodnych ulegają hydrolizie anionowej, która polega na dysocjacji zasadowej anionu, zgodnie z równaniem:

CO2−3 + H2O ⇄ HCO3 + OH

Drugi etap hydrolizy polegający na reakcji jonu HCO-3 z wodą zachodzi w tak małym stopniu, że nie ma wpływu na pH roztworu.

Dla przemiany zilustrowanej powyższym równaniem napisz wzory kwasów i zasad tworzących w tej reakcji sprzężone pary. Uzupełnij poniższą tabelę.

Kwas Zasada
Sprzężona para 1.                                
Sprzężona para 2.

Zadanie 11. (1 pkt)

Dysocjacja Podaj/wymień

Węglany w roztworach wodnych ulegają hydrolizie anionowej, która polega na dysocjacji zasadowej anionu, zgodnie z równaniem:

CO2−3 + H2O ⇄ HCO3 + OH

Drugi etap hydrolizy polegający na reakcji jonu HCO3 z wodą zachodzi w tak małym stopniu, że nie ma wpływu na pH roztworu.

Oceń, czy podwyższenie pH roztworu, w którym przebiegła reakcja zilustrowana powyższym równaniem, poskutkuje zmniejszeniem, czy – zwiększeniem stężenia anionów węglanowych CO2−3 .

Zadanie 12. (2 pkt)

Dysocjacja Oblicz

Węglany w roztworach wodnych ulegają hydrolizie anionowej, która polega na dysocjacji zasadowej anionu, zgodnie z równaniem:

CO2−3 + H2O ⇄ HCO3 + OH

Drugi etap hydrolizy polegający na reakcji jonu HCO-3 z wodą zachodzi w tak małym stopniu, że nie ma wpływu na pH roztworu.

W temperaturze 25°C wodny roztwór węglanu potasu o stężeniu 0,51 mol ⋅ dm−3 ma pH równe 12,0.

Oblicz stałą dysocjacji zasadowej (stałą równowagi reakcji hydrolizy) anionu węglanowego. Uwzględnij fakt, że w wyrażeniu na stałą dysocjacji zasadowej anionu węglanowego pomija się stężenie wody.

Zadanie 13. (1 pkt)

Dysocjacja Napisz równanie reakcji

Przeprowadzono doświadczenie, którego przebieg zilustrowano na schemacie:

Podczas przeprowadzonego doświadczenia zaobserwowano, że zawartość probówki I przybrała zabarwienie malinowe, a zawartość probówki II – czerwone.

Uzupełnij poniższe zapisy, tak aby otrzymać w formie jonowej skróconej równania procesów zachodzących w probówkach I oraz II i decydujących o odczynie wodnych roztworów soli.

Probówka I

+ H2O ⇄ +

Probówka II

+ H2O ⇄ +

Zadanie 14. (1 pkt)

pH Podaj/wymień

W temperaturze T przygotowano wodne roztwory sześciu elektrolitów: NaBr, NH4NO3, HCl, HCOOH, NaClO, NaClO4 o jednakowym stężeniu molowym równym 0,1 mol · dm–3.

Porównaj pH tych roztworów. Uzupełnij zdania wyrażeniami wybranymi spośród podanych poniżej.

wyższe niż
równe
niższe niż

pH wodnego roztworu NaBr jest pH wodnego roztworu NH4NO3.
pH wodnego roztworu HCl jest pH wodnego roztworu HCOOH.
pH wodnego roztworu NaClO jest pH wodnego roztworu NaClO4 .

Zadanie 15. (2 pkt)

Masa atomowa, cząsteczkowa i molowa Stechiometryczny stosunek reagentów Oblicz

Na próbkę stopu miedzi z cynkiem o masie 4,00 g podziałano 200 cm3 kwasu solnego o stężeniu 0,800 mol · dm–3. Przebiegła wtedy reakcja opisana równaniem:

Me + 2H3O+ → Me2+ + H2 + 2H2O

Roztwór otrzymany po reakcji rozcieńczono wodą do objętości 250 cm3. Stężenie jonów wodorowych w tym roztworze było równe 0,400 mol · dm–3.

Oblicz, ile gramów miedzi znajdowało się w opisanej próbce stopu. Wynik końcowy zaokrąglij do drugiego miejsca po przecinku.

Zadanie 16. (1 pkt)

Metale Zamknięte (np. testowe, prawda/fałsz)

Przeprowadzono doświadczenie, którego celem było porównanie aktywności trzech metali oznaczonych umownie literami A, X i Z. Przebieg doświadczenia zilustrowano poniższym schematem.

Zmiany zaobserwowane podczas doświadczenia pozwoliły stwierdzić, że aktywność użytych metali rośnie w szeregu A, Z, X.

Oceń, czy podane poniżej informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, albo F – jeśli jest fałszywa.

1. Spośród metali A, X, Z najsilniejszym reduktorem jest metal X. P F
2. Spośród jonów A2+ , X2+ , Z2+ najsilniejszym utleniaczem jest jon A2+ . P F
3. Podczas przeprowadzonego doświadczenia tylko w probówce III nie zaobserwowano objawów reakcji. P F

Zadanie 17. (1 pkt)

Podstawy chemii organicznej Zamknięte (np. testowe, prawda/fałsz)

Poniżej podano ciąg przemian chemicznych:

gdzie R – grupa alkilowa.

Halogenowanie alkanów (przemiana oznaczona na schemacie numerem 1) w obecności światła przebiega przez następujące etapy:

Szybkość tworzenia się halogenku alkilu zależy od szybkości, z jaką powstaje rodnik alkilowy.

Podkreśl numer najwolniejszego etapu reakcji oznaczonej na schemacie numerem 1.

Etap I
Etap II
Etap III

Zadanie 19. (1 pkt)

Kwasy karboksylowe Podaj/zinterpretuj przebieg reakcji

Poniżej podano ciąg przemian chemicznych:

gdzie R – grupa alkilowa.

Przeprowadzono doświadczenie, podczas którego przebiegła reakcja oznaczona na schemacie numerem 3.

Uzupełnij tabelę – wpisz barwy mieszaniny reakcyjnej przed reakcją i po reakcji, jakie można było zaobserwować w czasie tego doświadczenia.

Barwa mieszaniny reakcyjnej
przed reakcją po reakcji
                                                                                                   

Zadanie 20. (1 pkt)

Związki karbonylowe - ogólne Podaj/wymień

Ozon, odczynnik utleniający, ma zdolność rozszczepiania wiązania podwójnego. W niskiej temperaturze ozon szybko przyłącza się do wiązań podwójnych, w wyniku czego daje cykliczne produkty pośrednie, które ulegają przegrupowaniu do ozonków. Ostatecznym efektem reakcji ozonolizy jest rozszczepienie wiązania podwójnego. Każdy z dwóch atomów węgla, pierwotnie związanych wiązaniem podwójnym, w produktach rozszczepienia jest połączony podwójnym wiązaniem z atomem tlenu.

Na podstawie: J. McMurry, Chemia organiczna, Warszawa 2005.

Poniżej przedstawiono wzór półstrukturalny (grupowy) węglowodoru, który poddano ozonolizie.

Podaj nazwy systematyczne końcowych produktów reakcji ozonolizy, której poddano ten węglowodór.

Zadanie 21. (1 pkt)

Podstawy chemii organicznej Narysuj/zapisz wzór Podaj/wymień

Ozon, odczynnik utleniający, ma zdolność rozszczepiania wiązania podwójnego. W niskiej temperaturze ozon szybko przyłącza się do wiązań podwójnych, w wyniku czego daje cykliczne produkty pośrednie, które ulegają przegrupowaniu do ozonków. Ostatecznym efektem reakcji ozonolizy jest rozszczepienie wiązania podwójnego. Każdy z dwóch atomów węgla, pierwotnie związanych wiązaniem podwójnym, w produktach rozszczepienia jest połączony podwójnym wiązaniem z atomem tlenu.

Na podstawie: J. McMurry, Chemia organiczna, Warszawa 2005.

Pewien związek organiczny ma następujący wzór półstrukturalny (grupowy):

Spośród podanych poniżej wzorów węglowodorów I–III wybierz wzór związku, który – poddany ozonolizie – utworzył tylko jeden produkt przedstawiony powyższym wzorem. Podaj numer, którym oznaczono wzór wybranego związku. Następnie napisz wzór półstrukturalny (grupowy) węglowodoru, który – poddany ozonolizie – utworzył tylko jeden produkt końcowy o nazwie etanal.

Numer, którym oznaczono wzór wybranego związku:
Wzór węglowodoru, który – poddany ozonolizie – utworzył etanal jako jedyny produkt:

Zadanie 22. (2 pkt)

Izomeria geometryczna (cis-trans) Narysuj/zapisz wzór Podaj i uzasadnij/wyjaśnij

Spośród izomerycznych alkenów o wzorze sumarycznym C6H12 tylko alkeny A i B utworzyły w reakcji z HCl (jako produkt główny) halogenek alkilowy o wzorze:

O tych alkenach wiadomo także, że alken A występuje w postaci izomerów geometrycznych cis–trans, a alken B – nie.

Napisz wzory półstrukturalne (grupowe) alkenów A i B. Wyjaśnij, dlaczego alken B nie występuje w postaci izomerów geometrycznych cis–trans.

Wzór alkenu A Wzór alkenu B
                                                             
 
 
                                                             
 
 

Wyjaśnienie:

Zadanie 23. (1 pkt)

Węglowodory alifatyczne Narysuj/zapisz wzór

Alkiny o wzorze ogólnym R−C≡CH (tzw. alkiny terminalne) reagują z amidkiem sodu (NaNH2), w wyniku czego tworzą acetylenki sodu (R−C≡CNa) zgodnie z równaniem:

R−C≡CH + NaNH2 → R−C≡CNa+ + NH3

Na podstawie: J. McMurry, Chemia organiczna, Warszawa 2005.

Jeden z izomerycznych alkinów o wzorze sumarycznym C4H6, który umownie nazwano związkiem I, reaguje z amidkiem sodu. Drugi z izomerycznych alkinów, który umownie nazwano związkiem II, takiej reakcji nie ulega.

Uzupełnij poniższą tabelę. Napisz wzór półstrukturalny (grupowy) substancji, która jest organicznym produktem reakcji związku I z amidkiem sodu, oraz wzór półstrukturalny (grupowy) związku II.

Wzór organicznego produktu reakcji
związku I z amidkiem sodu
Wzór związku II
                                                             
 
                                                             
 

Zadanie 24. (1 pkt)

Energetyka reakcji Podaj i uzasadnij/wyjaśnij

W wysokiej temperaturze może zachodzić rozkład metanu na substancje proste zgodnie z równaniem:

CH4 (g) ⇄ C (s) + 2H2 (g)

Miarą wydajności tej reakcji jest równowagowy stopień przemiany metanu x, który wyraża się wzorem:

x = n0[CH4] − n[CH4]n0[CH4]

W tym wzorze n0[CH4] oznacza początkową liczbę moli metanu, a n[CH4] – liczbę moli tego gazu pozostałego po ustaleniu się stanu równowagi. Poniżej przedstawiono zależność równowagowego stopnia przemiany metanu x od temperatury dla trzech wartości ciśnienia.

Na podstawie: P. Schmidt-Szałowski, M. Szafran, E. Bobryk, J. Sentek, Technologia chemiczna. Przemysł nieorganiczny, Warszawa 2013.

Określ, czy ΔH opisanej reakcji rozkładu metanu jest większa od zera, czy – mniejsza od zera. Odpowiedź uzasadnij.

Zadanie 25. (1 pkt)

Wpływ czynników na przebieg reakcji Podaj i uzasadnij/wyjaśnij

W wysokiej temperaturze może zachodzić rozkład metanu na substancje proste zgodnie z równaniem:

CH4 (g) ⇄ C (s) + 2H2 (g)

Miarą wydajności tej reakcji jest równowagowy stopień przemiany metanu x, który wyraża się wzorem:

x = n0[CH4] − n[CH4]n0[CH4]

W tym wzorze n0[CH4] oznacza początkową liczbę moli metanu, a n[CH4] – liczbę moli tego gazu pozostałego po ustaleniu się stanu równowagi. Poniżej przedstawiono zależność równowagowego stopnia przemiany metanu x od temperatury dla trzech wartości ciśnienia.

Na podstawie: P. Schmidt-Szałowski, M. Szafran, E. Bobryk, J. Sentek, Technologia chemiczna. Przemysł nieorganiczny, Warszawa 2013.

Wyjaśnij, dlaczego wydajność opisanej reakcji maleje ze wzrostem ciśnienia.

Zadanie 26. (2 pkt)

Masa atomowa, cząsteczkowa i molowa Stechiometryczny stosunek reagentów Węglowodory alifatyczne Oblicz

Podczas ogrzewania próbki monochloropochodnej pewnego nasyconego węglowodoru o budowie łańcuchowej z nadmiarem wodnego roztworu wodorotlenku sodu przebiegła reakcja zilustrowana schematem:

Do otrzymanej mieszaniny poreakcyjnej dodano najpierw wodny roztwór kwasu azotowego(V) w celu zobojętnienia, a następnie – nadmiar wodnego roztworu azotanu(V) srebra. W wyniku reakcji opisanej równaniem:

Ag+ + Cl → AgCl ↓

wytrącił się osad, który odsączono i wysuszono. Masa próbki monochloropochodnej była równa 0,314 g, a w wyniku opisanych przemian otrzymano 0,574 g stałego chlorku srebra.

Wykonaj obliczenia i zaproponuj jeden wzór półstrukturalny (grupowy) chloropochodnej tego węglowodoru.

Zadanie 27. (3 pkt)

Miareczkowanie Bilans elektronowy Napisz równanie reakcji Oblicz

Oznaczanie zawartości fenolu w ściekach przemysłowych możne przebiegać w kilku etapach opisanych poniżej.
Etap I: Otrzymywanie bromu.
Etap II: Bromowanie fenolu.
Etap III: Wydzielanie jodu.
Etap IV: Miareczkowanie jodu.

27.1. (0–1)

Podczas etapu I (oznaczania zawartości fenolu) zachodzi reakcja jonów bromkowych z jonami bromianowymi(V) – BrO3 – w roztworze o odczynie kwasowym. Produktami tej przemiany są brom i woda.

Napisz w formie jonowej, z uwzględnieniem liczby oddawanych lub pobieranych elektronów (zapis jonowo-elektronowy), równanie reakcji redukcji i równanie reakcji utleniania zachodzących podczas opisanego procesu (etapu I). Uwzględnij środowisko reakcji.

Równanie reakcji redukcji:

Równanie reakcji utleniania:

27.2. (0–2)

Gdy do zakwaszonego roztworu fenolu zawierającego nadmiar jonów bromkowych wprowadzi się bromian(V) potasu w nadmiarze w stosunku do fenolu, to wytworzony brom (w ilości równoważnej do bromianu(V) potasu) reaguje z fenolem zgodnie z równaniem (etap II):

+ 3Br2
+ 3H+ + 3Br

Następnie do powstałej mieszaniny dodaje się jodek potasu. Brom, który nie został zużyty w reakcji bromowania, powoduje wydzielenie równoważnej ilości jodu (etap III):

2I + Br2 → 2Br + I2

Podczas kolejnego etapu (etapu IV) jod miareczkuje się wodnym roztworem tiosiarczanu sodu (Na2S2O3), co można zilustrować równaniem:

2S2O2−3 + I2 → S4O2−6 + 2I

Na podstawie: J. Minczewski, Z. Marczenko, Chemia analityczna – Podstawy teoretyczne i analiza jakościowa, Warszawa 2012.

Oblicz stężenie molowe fenolu w próbce ścieków o objętości 100,0 cm3, jeżeli wiadomo, że w etapie I oznaczania zawartości fenolu powstało 0,256 grama bromu oraz że podczas etapu IV oznaczania tego związku na zmiareczkowanie jodu zużyto 14,00 cm3 roztworu tiosiarczanu sodu o stężeniu 0,100 mol · dm–3.

Zadanie 28. (1 pkt)

Fenole Zamknięte (np. testowe, prawda/fałsz)

Oznaczanie zawartości fenolu w ściekach przemysłowych możne przebiegać w kilku etapach opisanych poniżej.
Etap I: Otrzymywanie bromu.
Etap II: Bromowanie fenolu.
Etap III: Wydzielanie jodu.
Etap IV: Miareczkowanie jodu.

Uzupełnij poniższe zdania. Wybierz i zaznacz jedno określenie spośród podanych w każdym nawiasie.

Fenol, który jest pochodną benzenu zawierającą grupę hydroksylową związaną z pierścieniem, ulega podczas etapu II oznaczania reakcji substytucji (elektrofilowej / nukleofilowej / rodnikowej). Bromowanie benzenu wymaga użycia katalizatora, natomiast reakcja fenolu z bromem przebiega łatwo już w temperaturze pokojowej. Można więc wnioskować, że grupa hydroksylowa związana z pierścieniem benzenowym (ułatwia / utrudnia) podstawienie atomów (bromu / wodoru) atomami (bromu / wodoru).

Zadanie 29. (3 pkt)

Izomeria konstytucyjna Podstawy chemii organicznej Podaj i uzasadnij/wyjaśnij

Etery są związkami o wzorze R−O−R’, przy czym R i R’ mogą być zarówno grupami alkilowymi, jak i arylowymi.
W poniższej tabeli zestawiono wartości temperatury wrzenia tw (pod ciśnieniem 1013 hPa) wybranych alkoholi oraz wybranych eterów o nierozgałęzionych cząsteczkach.

Wzór alkoholu tw, °C Wzór eteru tw, °C
I CH3CH2OH 79 VI CH3−O−CH3 −25
II CH3CH2CH2OH 97 VII CH3CH2−O−CH3 11
III CH3CH2CH2CH2OH 117 VIII CH3CH2−O−CH2CH3 35
IV CH3CH2CH2CH2CH2OH 138 IX CH3CH2CH2−O−CH2CH3 64
V CH3CH2CH2CH2CH2CH2OH 157 X CH3CH2CH2−O−CH2CH2CH3 91

Na podstawie: L. Jones, P. Atkins, Chemia ogólna, Warszawa 2006.

29.1. (0–1)

Czy alkohole i etery o tej samej liczbie atomów węgla w cząsteczce są izomerami? Uzasadnij swoją odpowiedź. Odnieś się do związków, których wzory wymieniono w tabeli.

29.2. (0–2)

Spośród związków o wzorach podanych w tabeli wybierz substancję najmniej lotną i substancję najbardziej lotną. Napisz numery, którymi oznaczono wzory wybranych związków. Następnie wyjaśnij, dlaczego etery są bardziej lotne niż alkohole o tej samej masie cząsteczkowej. Odnieś się do budowy cząsteczek związków, których wzory wymieniono w tabeli.

Numer związku najmniej lotnego:
Numer związku najbardziej lotnego:

Wyjaśnienie:

Zadanie 30. (2 pkt)

Hybrydyzacja orbitali i kształt cząsteczek Stopnie utlenienia Uzupełnij/narysuj wykres, schemat lub tabelę

Poniżej przedstawiono wzory: cykloheksanonu, cykloheksanolu i kwasu adypinowego. Literami a, b i c oznaczono wybrane atomy węgla.

Określ formalne stopnie utlenienia oraz typ hybrydyzacji (sp, sp2, sp3) atomów węgla oznaczonych w podanych wzorach literami a, b i c. Uzupełnij tabelę.

Atom węgla w cykloheksanonie w cykloheksanolu w kwasie adypinowym
a b c
Stopień utlenienia
Typ hybrydyzacji

Zadanie 31. (1 pkt)

Bilans elektronowy Podaj/wymień

Kwas adypinowy jest ważnym surowcem w produkcji tworzyw sztucznych. Na skalę techniczną otrzymuje się go przez utlenianie mieszaniny cykloheksanonu oraz cykloheksanolu. Poniżej przedstawiono równania tych przemian.

Przemiana I

Przemiana II

Na podstawie: K. Lautenschläger, W. Schröter, A. Wanninger, Nowoczesne kompendium chemii, Warszawa 2007.

Podaj liczbę moli elektronów oddawanych przez 1 mol cykloheksanonu i 1 mol cykloheksanolu podczas opisanych przemian.

Przemiana I:
Przemiana II:

Zadanie 32. (2 pkt)

Kwasy karboksylowe Napisz równanie reakcji Podaj i uzasadnij/wyjaśnij

Przeprowadzono doświadczenie, którego przebieg przedstawiono na poniższym schemacie.

Po delikatnym ogrzaniu kolby z mieszaniną reakcyjną zaobserwowano odbarwianie roztworu w kolbie oraz powstanie białego osadu w probówce.

Uzupełnij poniższy zapis, tak aby przedstawiał on w formie jonowej skróconej równanie reakcji, która zaszła w kolbie podczas przeprowadzonego doświadczenia. Oceń, czy gdyby do opisanego doświadczenia użyto kwasu etanowego zamiast kwasu metanowego, również zaobserwowano by odbarwienie roztworu w kolbie oraz powstanie osadu w probówce. Uzasadnij swoje stanowisko.

Ocena wraz z uzasadnieniem:

Zadanie 33. (2 pkt)

Izomeria optyczna Narysuj/zapisz wzór Podaj i uzasadnij/wyjaśnij

Poniżej przedstawiono wzór kwasu winowego:

HOOC–CH(OH)–CH(OH)–COOH

33.1. (0–1)

Przeanalizuj budowę cząsteczki kwasu winowego ze względu na możliwość wystąpienia stereoizomerii i odpowiedz na poniższe pytanie. Wpisz TAK albo NIE do tabeli i podaj uzasadnienie.

Czy obecność w cząsteczce kwasu winowego dwóch asymetrycznych atomów węgla upoważnia do sformułowania wniosku, że istnieją 4 możliwe odmiany cząsteczki tego kwasu (tzw. stereoizomery)?             

Uzasadnienie:

33.2. (0–1)

Uzupełnij poniższe schematy – utwórz wzory w projekcji Fischera dwóch stereoizomerów kwasu winowego będących diastereoizomerami.

Zadanie 34. (1 pkt)

Estry i tłuszcze Narysuj/zapisz wzór

Poniżej przedstawiono wzór kwasu winowego:

HOOC–CH(OH)–CH(OH)–COOH

Napisz wzór półstrukturalny (grupowy) organicznego produktu reakcji kwasu winowego z metanolem użytym w nadmiarze w środowisku stężonego kwasu siarkowego(VI).

 

 

 

Zadanie 35. (2 pkt)

Alkohole Zaprojektuj doświadczenie Podaj/zinterpretuj przebieg reakcji

Wykonano doświadczenie, w którym do dwóch probówek z tym samym odczynnikiem wprowadzono wodne roztwory dwóch związków chemicznych. Do probówki I wprowadzono wodny roztwór winianu disodu (NaOOC–CH(OH)–CH(OH)–COONa), a do probówki II – wodny roztwór etanianu (octanu) sodu (CH3COONa). W warunkach doświadczenia obydwa wodne roztwory były bezbarwnymi cieczami.

Zaprojektuj doświadczenie, którego przebieg pozwoli na potwierdzenie, że roztwór winianu disodu wprowadzono do probówki I, a roztwór octanu sodu – do probówki II.

35.1. (0–1)

Uzupełnij schemat doświadczenia. Podkreśl nazwę odczynnika, który – po dodaniu do niego roztworów opisanych związków i wymieszaniu zawartości probówek – umożliwi zaobserwowanie różnic w przebiegu doświadczenia z udziałem winianu disodu i octanu sodu.

35.2. (0–1)

Opisz zmiany możliwe do zaobserwowania w czasie doświadczenia, pozwalające na potwierdzenie, że do probówki I wprowadzono roztwór winianu disodu, a do probówki II – roztwór octanu sodu.

Probówka I:

Probówka II:

Zadanie 37. (2 pkt)

Identyfikacja związków organicznych Podaj/zinterpretuj przebieg reakcji Podaj i uzasadnij/wyjaśnij

W czterech nieopisanych naczyniach znajdują się oddzielnie: tyrozyna (Tyr), glicyna (Gly), biuret (H2N-CO-NH-CO-NH2) i alanina (Ala). Przeprowadzono doświadczenie, podczas którego wykonano dwie próby. Podczas pierwszej próby na czterech szkiełkach zegarkowych umieszczono niewielkie ilości wymienionych substancji i na każdą naniesiono kilka kropli stężonego wodnego roztworu kwasu azotowego(V). Wynik próby pozwolił na identyfikację jednej substancji. Podczas drugiej próby sporządzono wodne roztwory trzech pozostałych substancji i do każdego roztworu dodano świeżo wytrącony wodorotlenek miedzi(II). Wynik próby pozwolił na identyfikację drugiej substancji.

Uzupełnij poniższą tabelę. Podaj nazwę substancji, która została zidentyfikowana po przeprowadzeniu pierwszej próby, oraz nazwę substancji, która została zidentyfikowana po przeprowadzeniu drugiej próby. W każdym przypadku uzasadnij wybór substancji.

Nazwa zidentyfikowanej substancji Uzasadnienie wyboru
Pierwsza próba
Druga próba

Zadanie 38. (2 pkt)

Miareczkowanie Aminokwasy Napisz równanie reakcji

Do zakwaszonego roztworu alaniny dodawano kroplami wodny roztwór wodorotlenku sodu i mierzono pH mieszaniny reakcyjnej. Na poniższym wykresie zilustrowano zależność pH mieszaniny od objętości dodanego roztworu wodorotlenku sodu (w jednostkach umownych).

Aminokwasy istnieją głównie w formie jonów. W roztworach o niskim pH cząsteczka aminokwasu jest protonowana. W roztworach o wysokim pH aminokwas traci proton. Istnieje także pH, przy którym aminokwas występuje jako jon obojnaczy.

Na podstawie: J. McMurry, Chemia organiczna, Warszawa 2005.

Podczas opisanego miareczkowania przebiegły reakcje chemiczne zilustrowane schematem:

forma protonowana alaniny
forma alaniny w punkcie A
deprotonowana forma alaniny

Napisz równania reakcji oznaczonych na schemacie numerami 1 i 2. Zastosuj wzory półstrukturalne (grupowe) form alaniny.

Równanie reakcji 1:

Równanie reakcji 2:

Zadanie 39. (1 pkt)

Cukry - ogólne Zamknięte (np. testowe, prawda/fałsz)

Wodny roztwór pewnego cukru zmieszany w środowisku wodorowęglanu sodu (NaHCO3) z wodą bromową nie powoduje jej odbarwienia. Ponadto ten cukier daje pozytywny wynik próby Trommera i próby Tollensa.

Wybierz i podkreśl wzór cukru, którego może dotyczyć powyższy opis.

Zadanie 36. (3 pkt)

pH Identyfikacja związków organicznych Napisz równanie reakcji Narysuj/zapisz wzór Podaj/zinterpretuj przebieg reakcji

W trzech probówkach (I, II i III) znajdowały się wodne roztwory:

mocznika (CO(NH2)2),
chlorku amonu (NH4Cl)
i acetamidu (CH3CONH2)

W celu ich identyfikacji przeprowadzono dwie serie doświadczeń.
W pierwszej serii doświadczeń do każdej probówki zanurzono żółty uniwersalny papierek wskaźnikowy. Zmianę barwy wskaźnika zaobserwowano tylko w probówce III.
W drugiej serii doświadczeń do probówek I i II dodano wodny roztwór wodorotlenku sodu i ogrzano zawartości obu naczyń. U wylotu obu probówek wyczuwalny był ten sam charakterystyczny zapach. Następnie do probówek I i II dodano wodny roztwór azotanu(V) baru. Pojawienie się białego osadu zaobserwowano tylko w probówce I.

36.1. (0–1)

Podaj nazwy związków, które zidentyfikowano podczas przeprowadzonych doświadczeń.

Probówka I:
Probówka II:
Probówka III:

36.2. (0–1)

Określ odczyn roztworu znajdującego się w probówce III i napisz w formie jonowej skróconej równanie reakcji, które potwierdzi wskazany odczyn.

Odczyn roztworu:
Równanie reakcji:

36.3. (0–1)

Napisz wzór substancji, której charakterystyczny zapach był wyczuwalny u wylotu probówek I i II, oraz napisz w formie jonowej skróconej równanie reakcji, w wyniku której w probówce I powstał biały osad.

Wzór substancji:
Równanie reakcji: